Из чего состоит атомный реактор. Реакторы на быстрых нейтронах

Ядерный реактор — устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии.

История

Самоподдерживающаяся управляемая цепная реакция деления ядер (кратко — цепная реакция) была впервые осуществлена в декабре 1942 г. Группа физиков Чикагского университета , возглавляемая Э. Ферми , построила первый в мире ядерный реактор, названный СР-1 . Он состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. Быстрые нейтроны, появляющиеся после деления ядер 235U , замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, подобные СР-1, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых нейтронах. В их состав входит очень много замедлителя по сравнению с ураном.

В СССР теоретические и экспериментальные исследования особенностей пуска, работы и контроля реакторов были проведены группой физиков и инженеров под руководством академика И. В. Курчатова . Первый советский реактор Ф-1 выведен в критическое состояние 25 декабря 1946 г. Реактор Ф-1 набран из графитовых блоков и имеет форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м по отверстиям в графитовых блоках размещены урановые стержни. Результаты исследований на реакторе Ф-1 стали основой проектов более сложных по конструкции промышленных реакторов. В 1949 г. введён в действие реактор по производству плутония, а 27 июня 1954 г. вступила в строй первая в мире атомная электростанция электрической мощностью 5 МВт в г. Обнинске.

Устройство и принцип работы

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии — энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, т. е. химических реакций, такое повышение обычно составляет сотни градусов Кельвина, в случае же ядерных реакций — это минимум 107°К из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез). Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются как продукты экзоэнергетической реакции.

Схематическое устройство гетерогенного реактора на тепловых нейтронах1 — управляющий стержень; 2 — биологическая защита; 3 — тепловая защита; 4 — замедлитель; 5 — ядерное топливо; 6 — теплоноситель.

Схематическое устройство гетерогенного реактора на тепловых нейтронах

    управляющий стержень;

    биологическая защита;

    тепловая защита;

    замедлитель;

    ядерное топливо;

    теплоноситель.

Конструкция

Любой ядерный реактор состоит из следующих частей:

    Активная зона с ядерным топливом и замедлителем;

    Отражатель нейтронов, окружающий активную зону;

    Теплоноситель;

    Система регулирования цепной реакции, в том числе аварийная защита

    Радиационная защита

    Система дистанционного управления

Основная характеристика реактора — его выходная мощность. Мощность в 1 МВт соответствует цепной реакции, при которой происходит 3·1016 делений в 1 сек.

Физические принципы работы

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ, которые связаны следующим соотношением:

Для этих величин характерны следующие значения:

    k > 1 — цепная реакция нарастает во времени, реактор находится в надкритичном состоянии, его реактивность ρ > 0;

    k < 1 — реакция затухает, реактор — подкритичен, ρ < 0;

    k = 1, ρ = 0 — число делений ядер постоянно, реактор находится в стабильном критическом состоянии.

Условие критичности ядерного реактора:

    ω есть доля полного числа образующихся в реакторе нейтронов, поглощённых в активной зоне реактора, или вероятность избежать нейтрону утечки из конечного объема.

    k 0 — коэффициент размножения нейтронов в активной зоне бесконечно больших размеров.

Обращение коэффициента размножения в единицу достигается сбалансированием размножения нейтронов с их потерями. Причин потерь фактически две: захват без деления и утечка нейтронов за пределы размножающей среды.

Очевидно, что k < k0, поскольку в конечном объёме вследствие утечки потери нейтронов обязательно больше, чем в бесконечном. Поэтому, если в веществе данного состава k0 < 1, то цепная самоподдерживающаяся реакция невозможна как в бесконечном, так и в любом конечном объёме. Таким образом, k0 определяет принципиальную способность среды размножать нейтроны

k0 для тепловых реакторов можно определить по так называемой «формуле 4-х сомножителей»:

    μ — коэффициент размножения на быстрых нейтронах;

    φ — вероятность избежать резонансного захвата;

    θ — коэффициент использования тепловых нейтронов;

    η — выход нейтронов на одно поглощение.

Объёмы современных энергетических реакторов могут достигать сотен м 3 и определяются главным образом не условиями критичности, а возможностями теплосъёма.

Критический объём ядерного реактора — объём активной зоны реактора в критическом состоянии. Критическая масса — масса делящегося вещества реактора, находящегося в критическом состоянии.

Наименьшей критической массой обладают реакторы, в которых топливом служат водные растворы солей чистых делящихся изотопов с водяным отражателем нейтронов. Для 235 U эта масса равна 0,8 кг, для 239 Pu — 0,5 кг. Теоретически, наименьшей критической массой обладает 251 Cf, для которого эта величина составляет всего 10 г.

С целью уменьшения утечки нейтронов, активной зоне придают сферическую или близкую к сферической форму, например короткого цилиндра или куба, так как эти фигуры обладают наименьшим отношением площади поверхности к объёму.

Несмотря на то, что величина (e — 1) обычно невелика, роль размножения на быстрых нейтронах достаточно велика, поскольку для больших ядерных реакторов (К∞ — 1) << 1. Без этого процесса было бы невозможным создание первых графитовых реакторов на естественном уране.

Для начала цепной реакции обычно достаточно нейтронов, рождаемых при спонтанном делении ядер урана. Возможно также использование внешнего источника нейтронов для запуска реактора, например, смеси Ra и Be, 252 Cf или других веществ.

Иодная яма

Иодная яма — состояние ядерного реактора после его выключения, характеризующееся накоплением короткоживущего изотопа ксенона (135 Xe). Этот процесс приводит к временному появлению значительной отрицательной реактивности, что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1—2 суток).

Классификация

По характеру использования

По характеру использования ядерные реакторы делятся на:

    Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает несколько кВт;

    Исследовательские реакторы, в которых потоки нейтронов и γ-квантов, создаваемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 Мвт; выделяющаяся энергия, как правило, не используется.

    Изотопные (оружейные, промышленные) реакторы, используемые для наработки изотопов, используемых в ядерных вооружениях, например 239Pu.

    Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, при опреснении воды, для привода силовых установок кораблей и т. д.; Тепловая мощность современного энергетического реактора достигает 3—5 ГВт.

По спектру нейтронов

    Реактор на тепловых нейтронах («тепловой реактор»)

    Реактор на быстрых нейтронах («быстрый реактор»)

    Реактор на промежуточных нейтронах

По размещению топлива

    Гетерогенные реакторы, где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;

    Гомогенные реакторы, где топливо и замедлитель представляют однородную смесь (гомогенную систему).

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими элементами (ТВЭЛ’ами), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки.

По виду топлива

По степени обогащения:

    Естественный уран

    Слабо обогащённый уран

    Чистый делящийся изотоп

По химическому составу:

    металлический U

    UO 2 (диоксид урана)

    UC (карбид урана) и т. д.

По виду теплоносителя

    H 2 O (вода, см. Водо-водяной реактор)

    Газ, (см. Графито-газовый реактор)

    Реактор с органическим теплоносителем

    Реактор с жидкометаллическим теплоносителем

    Реактор на расплавах солей

По роду замедлителя

    С (графит, см. Графито-газовый реактор, Графито-водный реактор)

    H 2 O (вода, см. Легководный реактор, Водо-водяной реактор, ВВЭР)

    D 2 O (тяжёлая вода, см. Тяжеловодный ядерный реактор, CANDU)

    Гидриды металлов

    Без замедлителя

По конструкции

    Корпусные реакторы

    Канальные реакторы

По способу генерации пара

    Реактор с внешним парогенератором

    Кипящий реактор

В начале XXI века наиболее распространены гетерогенные ядерные реакторы на тепловых нейтронах с замедлителями — H 2 O, С, D 2 O и теплоносителями — H 2 O, газ, D 2 O, например, водо-водяные ВВЭР, канальные РБМК.

Перспективными являются также быстрые реакторы. Топливом в них служит 238U, что позволяет в десятки раз улучшить использование ядерного топлива по сравнению с тепловыми реакторами, это существенно увеличивает ресурсы ядерной энергетики.

Материалы реакторов

Материалы, из которых строят реакторы, работают при высокой температуре в поле нейтронов, γ-квантов и осколков деления. Поэтому для реакторостроения пригодны не все материалы, применяемые в других отраслях техники. При выборе реакторных материалов учитывают их радиационную стойкость, химическую инертность, сечение поглощения и другие свойства.

Оболочки ТВЭЛов, каналы, замедлители (отражатели) изготовляют из материалов с небольшими сечениями поглощения. Применение материалов, слабо поглощающих нейтроны, снижает непроизводительный расход нейтронов, уменьшает загрузку ядерного топлива и увеличивает коэффициент воспроизводства КВ. Для поглощающих стержней, наоборот, пригодны материалы с большим сечением поглощения. Это значительно сокращает количество стержней, необходимых для управления реактором.

Быстрые нейтроны, γ-кванты и осколки деления повреждают структуру вещества. Так, в твёрдом веществе быстрые нейтроны выбивают атомы из кристаллической решётки или сдвигают их с места. Вследствие этого ухудшаются пластические свойства и теплопроводность материалов. Сложные молекулы под действием излучения распадаются на более простые молекулы или составные атомы. Например, вода разлагается на кислород и водород. Это явление известно под названием радиолиза воды.

Радиационная нестойкость материалов меньше сказывается при высоких температурах. Подвижность атомов становится настолько большой, что вероятность возвращения выбитых из кристаллической решётки атомов на своё место или рекомбинация водорода и кислорода в молекулу воды заметно увеличивается. Так, радиолиз воды несуществен в энергетических некипящих реакторах (например, ВВЭР), в то время как в мощных исследовательских реакторах выделяется значительное количество гремучей смеси. В реакторах есть специальные системы для ее сжигания.

Реакторные материалы контактируют между собой (оболочка ТВЭЛа с теплоносителем и ядерным топливом, тепловыделяющие кассеты — с теплоносителем и замедлителем и т. д.). Естественно, что контактирующие материалы должны быть химически инертными (совместимыми). Примером несовместимости служат уран и горячая вода, вступающие в химическую реакцию.

У большинства материалов прочностные свойства резко ухудшаются с увеличением температуры. В энергетических реакторах конструкционные материалы работают при высоких температурах. Это ограничивает выбор конструкционных материалов, особенно для тех деталей энергетического реактора, которые должны выдерживать высокое давление.

Выгорание и воспроизводство ядерного топлива

В процессе работы ядерного реактора из-за накопления в топливе осколков деления изменяется его изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов Pu. Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора — 135 Xe, обладающий наибольшим сечением поглощения нейтронов (2,6·106 барн). Период полураспада 135 Xe T½ = 9,2 ч; выход при делении составляет 6—7%. Основная часть 135Xe образуется в результате распада 135 I (T½ = 6,8 ч). При отравлении Кэф изменяется на 1—3%. Большое сечение поглощения 135 Xe и наличие промежуточного изотопа 135 I приводят к двум важным явлениям:

    К увеличению концентрации 135 Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность йодной ямы зависят от потока нейтронов Ф: при Ф = 5·1018 нейтрон/(см 2 ·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение Кэф, вызванное отравлением 135 Xe.

    Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 1018 нейтронов/(см 2 ·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает большое число стабильных осколков, которые различаются сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением сечения поглощения достигает насыщения в течение нескольких первых суток работы реактора. Главным образом это 149Sm, изменяющий Кэф на 1%). Концентрация осколков с малым значением сечения поглощения и вносимая ими отрицательная реактивность возрастают линейно во времени.

Образование трансурановых элементов в ядерном реакторе происходит по следующим схемам:

    235 U + n → 236 U + n → 237 U →(7 сут)→ 237 Np + n → 238 Np →(2,1 сут)→ 238 Pu

    238 U + n → 239 U →(23 мин)→ 239 Np →(2,3 сут)→ 239 Pu (+осколки) + n → 240 Pu + n → 241 Pu (+осколки) + n → 242 Pu + n → 243 Pu →(5 ч)→ 243 Am + n → 244 Am →(26 мин)→ 244 Cm

Время между стрелками обозначает период полураспада, «+n» обозначает поглощение нейтрона.

В начале работы реактора происходит линейное накопление 239 Pu, причём тем быстрее (при фиксированном выгорании 235 U), чем меньше обогащение урана. Далее концентрация 239 Pu стремится к постоянной величине, которая не зависит от степени обогащения, а определяется отношением сечений захвата нейтронов 238 U и 239 Pu. Характерное время установления равновесной концентрации 239 Pu ˜ 3/Ф лет (Ф в ед. 1013 нейтронов/см 2 ×сек). Изотопы 240 Pu, 241 Pu достигают равновесной концентрации только при повторном сжигании горючего в ядерном реакторе после регенерации ядерного топлива.

Выгорание ядерного топлива характеризуют суммарной энергией, выделившейся в реакторе на 1 топлива. Эта величина составляет:

    ˜ 10 Гвт·сут/т — реакторы на тяжёлой воде;

    ˜ 20—30 Гвт·сут/т — реакторы на слабообогащённом уране (2—3% 235U);

    до 100 Гвт·сут/т — реакторы на быстрых нейтронах.

Выгорание 1 Гвт·сут/т соответствует сгоранию 0,1% ядерного топлива.

По мере выгорания топлива реактивность реактора уменьшается. Замена выгоревшего топлива производится сразу из всей активной зоны или постепенно, оставляя в работе ТВЭЛы разных «возрастов». Такой режим называется непрерывной перегрузкой топлива.

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, т. к. реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала главным образом за счёт деления запаздывающими нейтронами, а затем, через 1—2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3%, через 1 ч — 1%, через сутки — 0,4%, через год — 0,05%.

Отношение количества делящихся изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235 U называется коэффициентом конверсии KK. Величина KK увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 Гвт·сут/т KK = 0,55, а при небольших выгораниях (в этом случае KK называется начальным плутониевым коэффициентом) KK = 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства КВ. В ядерных реакторах на тепловых нейтронах КВ < 1, а для реакторов на быстрых нейтронах КВ может достигать 1,4—1,5. Рост КВ для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239 Pu, для быстрых нейтронов g растёт, а а падает.

Управление ядерным реактором

Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Протекающие в реакторе процессы вызывают ухудшение размножающих свойств среды, и без механизма восстановления реактивности реактор не смог бы работать даже малое время. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, в активную зону вводятся вещества-поглотители нейтронов. Поглотители входят в состав материала управляющих стержней, перемещающихся по соответствующим каналам в активной зоне. Причём если для регулирования достаточно всего нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы. Компенсация выгорания может также достигаться применением специальных поглотителей, эффективность которых убывает при захвате ими нейтронов (Cd, В, редкоземельные элементы) или растворов поглощающих веществ в замедлителе.

Управление ядерным реактором упрощает тот факт, что часть нейтронов при делении вылетает из осколков с запаздыванием, которое может составить от 0,2 до 55 сек. Благодаря этому, нейтронный поток и, соответственно, мощность изменяются достаточно плавно, давая время на принятие решения и изменение состояния реактора извне.

Для управления ядерным реактором служит система управления и защиты (СУЗ). Органы СУЗ делятся на:

    Аварийные, уменьшающие реактивность (вводящие в реактор отрицательную реактивность) при появлении аварийных сигналов;

    Автоматические регуляторы, поддерживающие постоянным нейтронный поток Ф (т. е. мощность на выходе);

    Компенсирующие, служащие для компенсации отравления, выгорания, температурных эффектов.

В большинстве случаев для управления реактором используют стержни, вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (Cd, В и др.). Движение стержней управляется специальными механизмами, работающими по сигналам приборов, чувствительных к величине нейтронного потока.

Работа органов СУЗ заметно упрощается для реакторов с отрицательным температурным коэффициентом реактивности (с ростом температуры r уменьшается).

На основе информации о состоянии реактора, специальным вычислительным комплексом формируются рекомендации оператору по изменению состояния реактора, либо, в определённых пределах, управление реактором производится без участия оператора.

На случай непредвиденного катастрофического развития цепной реакции, в каждом реакторе предусмотрено экстренное прекращение цепной реакции, осуществляемое сбрасыванием в активную зону специальных аварийных стержней или стержней безопасности — система аварийной защиты.

Атомная электроэнергетика – современный и быстро развивающийся способ добычи электричества. А вы знаете, как устроены атомные станции? Каков принцип работы АЭС? Какие типы ядерных реакторов сегодня существуют? Постараемся детально рассмотреть схему работы АЭС, вникнуть в устройство ядерного реактора и узнать о том, насколько безопасен атомный способ добычи электроэнергии.

Любая станция – это закрытая зона вдалеке от жилого массива. На ее территории находятся несколько зданий. Самое главное сооружение – здание реактора, рядом с ним расположен машинный зал, из которого реактором управляют, и здание безопасности.

Схема невозможна без ядерного реактора. Атомный (ядерный) реактор – это устройство АЭС, которое призвано организовать цепную реакцию деления нейтронов с обязательным выделением энергии при этом процессе. Но каков принцип работы АЭС?

Вся реакторная установка помещается в здание реактора, большую бетонную башню, которая скрывает реактор и в случае аварии удержит в себе все продукты ядерной реакции. Эту большую башню называют контейнтмент, герметичная оболочка или гермозона.

Гермозона в новых реакторах имеет 2 толстые бетонные стенки – оболочки.
Внешняя оболочка толщиной в 80 см обеспечивает защиту гермозоны от внешних воздействий.

Внутренняя оболочка толщиной в 1 метр 20 см имеет в своем устройстве специальные стальные тросы, которые увеличивают прочность бетона почти в три раза и не дадут конструкции рассыпаться. С внутренней стороны она выложена тонким листом специальной стали, которая призвана служить дополнительной защитой контейнтмента и в случае аварии не выпустить содержимое реактора за пределы гермозоны.

Такое устройство атомной станции позволяет выдержать падение самолета весом до 200 тонн, 8 бальное землетрясение, торнадо и цунами.

Впервые герметичная оболочка была сооружена на американской АЭС Коннектикут Янки в 1968 году.

Полная высота гермозоны – 50-60 метров.

Из чего состоит атомный реактор?

Чтобы понять принцип работы ядерного реактора, а значит и принцип работы АЭС, нужно разобраться в составляющих реактора.

  • Активная зона. Это зона, куда помещается ядерное топливо (тепловыделитель) и замедлитель. Атомы топлива (чаще всего топливом выступает уран) совершают цепную реакцию деления. Замедлитель призван контролировать процесс деления, и позволяет провести нужную по скорости и силе реакцию.
  • Отражатель нейтронов. Отражатель окружает активную зону. Состоит он из того же материала, что и замедлитель. По сути это короб, главное назначение которого – не дать нейтронам выйти из активной зоны и попасть в окружающую среду.
  • Теплоноситель. Теплоноситель должен вобрать в себя тепло, которое выделилось при делении атомов топлива, и передать его другим веществам. Теплоноситель во многом определяет то, как устроена АЭС. Самый популярный теплоноситель на сегодня – вода.
    Система управления реактором. Датчики и механизмы, которые приводят реактор АЭС в действие.

Топливо для АЭС

На чем работает АЭС? Топливо для АЭС – это химические элементы, обладающие радиоактивными свойствами. На всех атомных станциях таким элементом выступает уран.

Устройство станций подразумевает, что АЭС работают на сложном составном топливе, а не на чистом химическом элементе. И чтобы из природного урана добыть урановое топливо, которое загружается в ядерный реактор, нужно провести множество манипуляций.

Обогащенный уран

Уран состоит из двух изотопов, то есть в его составе есть ядра с разной массой. Назвали их по количеству протонов и нейтронов изотоп -235 и изотоп-238. Исследователи 20 века начали добывать из руды 235й уран, т.к. его легче было разлагать и преобразовывать. Выяснилось, что такого урана в природе всего 0,7 % (остальные проценты достались 238му изотопу).

Что делать в этом случае? Уран решили обогащать. Обогащение урана это процесс, когда в нем остается много нужных 235х изотопов и мало ненужных 238х. Задача обогатителей урана – из 0.7% сделать почти 100% урана-235.

Обогатить уран можно с помощью двух технологий – газодиффузионной или газоцентрифужной. Для их использования уран, добытый из руды, переводят в газообразное состояние. В виде газа его и обогащают.

Урановый порошок

Обогащенный урановый газ переводят в твердое состояние – диоксид урана. Такой чистый твердый 235й уран выглядит как большие белые кристаллы, которые позже дробят в урановый порошок.

Урановые таблетки

Урановые таблетки – это твердые металлические шайбы, длиной в пару сантиметров. Чтобы из уранового порошка слепить такие таблетки, его перемешивают с веществом – пластификатором, он улучшает качество прессования таблеток.

Прессованные шайбы запекают при температуре 1200 градусов по Цельсию более суток, чтобы придать таблеткам особую прочность и устойчивость к высоким температурам. То, как работает АЭС, напрямую зависит от того, насколько хорошо спрессовали и запекли урановое топливо.

Запекают таблетки в молибденовых ящиках, т.к. только этот металл способен не расплавиться при «адских» температурах свыше полутора тысяч градусов. После этого урановое топливо для АЭС считается готовым.

Что такое ТВЭЛ и ТВС?

Активная зона реактора внешне выглядит как огромный диск или труба с дырками в стенках (в зависимости от типа реактора), раз в 5 больше человеческого тела. В этих дырках находится урановое топливо, атомы которого и проводят нужную реакцию.

Просто так закинуть топливо в реактор невозможно, ну, если вы не хотите получить взрыв всей станции и аварию с последствиями на пару близлежащих государств. Поэтому урановое топливо помещается в ТВЭЛы, а потом собирается в ТВС. Что значат эти аббревиатуры?

  • ТВЭЛ – тепловыделяющий элемент (не путать с одноименным названием российской компании, которая их производит). По сути это тонкая и длинная циркониевая трубка, сделанная из сплавов циркония, в которую помещаются урановые таблетки. Именно в ТВЭЛах атомы урана начинают взаимодействовать друг с другом, выделяя тепло при реакции.

Цирконий выбран материалом для производства ТВЭЛов благодаря его тугоплавкости и антикоррозийности.

Тип ТВЭЛов зависит от типа и строения реактора. Как правило, строение и назначение ТВЭЛов не меняется, разными могут быть длина и ширина трубки.

В одну циркониевую трубку автомат загружает более 200 урановых таблеток. Всего в реакторе одновременно работают около 10 миллионов урановых таблеток.
ТВС – тепловыделяющая сборка. Работники АЭС называют ТВС пучками.

По сути это несколько ТВЭЛов, скрепленных между собой. ТВС – это готовое атомное топливо, то, на чем работает АЭС. Именно ТВС загружаются в ядерный реактор. В один реактор помещаются около 150 – 400 ТВС.
В зависимости от того, в каком реакторе ТВС будет работать, они бывают разной формы. Иногда пучки складываются в кубическую, иногда в цилиндрическую, иногда в шестиугольную форму.

Одна ТВС за 4 года эксплуатации вырабатывает столько же энергии как при сжигании 670 вагонов угля, 730 цистерн с природным газом или 900 цистерн, груженных нефтью.
Сегодня ТВС производят в основном на заводах России, Франции, США и Японии.

Чтобы доставить топливо для АЭС в другие страны, ТВС запечатывают в длинные и широкие металлические трубы, из труб выкачивают воздух и специальными машинами доставляют на борта грузовых самолетов.

Весит ядерное топливо для АЭС запредельно много, т.к. уран – один из самых тяжелых металлов на планете. Его удельный вес в 2,5 раза больше, чем у стали.

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

ВАЖНО ЗНАТЬ:

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так:
После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

Типы ядерных реакторов

То, как работает АЭС, зависит от того, как именно работает ее атомный реактор. Сегодня есть два основных типа реакторов, которые классифицируются по спектру нейронов:
Реактор на медленных нейтронах, его также называют тепловым.

Для его работы используется 235й уран, который проходит стадии обогащения, создания урановых таблеток и т.д. Сегодня реакторов на медленных нейтронах подавляющее большинство.
Реактор на быстрых нейтронах.

За этими реакторами будущее, т.к. работают они на уране-238, которого в природе пруд пруди и обогащать этот элемент не нужно. Минус таких реакторов только в очень больших затратах на проектирование, строительство и запуск. Сегодня реакторы на быстрых нейтронах работают только в России.

Теплоносителем в реакторах на быстрых нейтронах выступает ртуть, газ, натрий или свинец.

Реакторы на медленных нейтронах, которыми сегодня пользуются все АЭС мира, тоже бывают нескольких типов.

Организация МАГАТЭ (международное агентство по атомной энергетике) создало свою классификацию, которой пользуются в мировой атомной энергетике чаще всего. Так как принцип работы атомной станции во многом зависит от выбора теплоносителя и замедлителя, МАГАТЭ базировали свою классификацию на этих различиях.


С химической точки зрения оксид дейтерия идеальный замедлитель и теплоноситель, т.к. ее атомы наиболее эффективно взаимодействуют с нейтронами урана по сравнению с другими веществами. Попросту говоря, свою задачу тяжелая вода выполняет с минимальными потерями и максимальным результатом. Однако ее производство стоит денег, в то время как обычную «легкую» и привычную для нас воду использовать куда проще.

Несколько фактов об атомных реакторах…

Интересно, что один реактор АЭС строят не менее 3х лет!
Для постройки реактора необходимо оборудование, которое работает на электрическом токе в 210 кило Ампер, что в миллион раз превышает силу тока, которая способна убить человека.

Одна обечайка (элемент конструкции) ядерного реактора весит 150 тонн. В одном реакторе таких элементов 6.

Водо-водяной реактор

Как работает АЭС в целом, мы уже выяснили, чтобы все «разложить по полочкам» посмотрим, как работает наиболее популярный водо-водяной ядерный реактор.
Во всем мире сегодня используют водо-водяные реакторы поколения 3+. Они считаются самыми надежными и безопасными.

Все водо-водяные реакторы в мире за все годы их эксплуатации в сумме уже успели набрать более 1000 лет безаварийной работы и ни разу не давали серьезных отклонений.

Структура АЭС на водо-водяных реакторах, подразумевает, что между ТВЭЛами циркулирует дистиллированная вода, нагретая до 320 градусов. Чтобы не дать ей перейти в парообразное состояние ее держат под давлением в 160 атмосфер. Схема АЭС называет ее водой первого контура.

Нагретая вода попадает в парогенератор и отдает свое тепло воде второго контура, после чего снова «возвращается» в реактор. Внешне это выглядит так, что трубки воды первого контура соприкасаются с другими трубками – воды второго контура, они передают тепло друг другу, но воды не контактируют. Контактируют трубки.

Таким образом, исключена возможность попадания радиации в воду второго контура, которая будет далее участвовать в процессе добычи электричества.

Безопасность работы АЭС

Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности.
Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.

В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).

  • Первый барьер – прочность урановых таблеток. Важно, чтобы они не разрушались под воздействием высоких температур в ядерном реакторе. Во многом то, как работает атомная станция, зависит от того, как «испекли» таблетки из урана на начальной стадии изготовления. Если таблетки с урановым топливом запечь неверно, то реакции атомов урана в реакторе будут непредсказуемыми.
  • Второй барьер – герметичность ТВЭЛов. Циркониевые трубки должны быть плотно запечатаны, если герметичность будет нарушена, то в лучшем случае реактор будет поврежден и работа остановлена, в худшем – все взлетит на воздух.
  • Третий барьер – прочный стальной корпус реактор а, (та самая большая башня – гермозона) который «удерживает» в себе все радиоактивные процессы. Повредится корпус – радиация выйдет в атмосферу.
  • Четвертый барьер – стержни аварийной защиты. Над активной зоной на магниты подвешиваются стержни с замедлителями, которые могут за 2 секунды поглотить все нейтроны и остановить цепную реакцию.

Если, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.

Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».

Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.

Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.

Каж­дый день мы исполь­зуем элек­три­че­сто и не заду­мы­ва­емся над тем, как оно про­из­во­дится и как оно к нам попало. А тем не менее это одна из самых важ­ных частей совре­мен­ной циви­ли­за­ции. Без элек­три­че­ства не было бы ничего - ни света, ни тепла, ни движения.

Все знают про то, что элек­три­чевто выра­ба­ты­ва­ется на элек­тро­стан­циях, в том числе и на атом­ных. Сердце каж­дой АЭС - это ядер­ный реак­тор . Именно его мы будем раз­би­рать в этой статье.

Ядер­ный реак­тор , устрой­ство в кото­ром про­ис­те­кает управ­ля­е­мая цеп­ная ядер­ная реак­ция с выде­ле­нием тепла. В основ­ном ти устрой­ства исполь­зу­ются для выра­ботки элек­тро­энер­гии и в каче­стве при­вода боль­ших кораб­лей. Для того, чтобы пред­ста­вить себе, мощ­ность и эко­но­мич­ность ядер­ных реак­то­ров можно при­ве­сти при­мер. Там где сред­нему ядер­ному реак­тору потре­бу­ется 30 кило­грамм урана, сред­ней ТЭЦ потре­бу­ется 60 ваго­нов угля или 40 цистерн мазута.

Про­об­раз ядер­ного реак­тора был построен в декабре 1942 года в США под руко­вод­ством Э. Ферми. Это была так назы­ва­е­мая “Чикаг­ская стопка”. Chicago Pile (впо­след­ствии слово “Pile” наряду с дру­гими зна­че­ни­ями стало обо­зна­чать ядер­ный реак­тор). Такое назва­ние дали ему из-за того, что он напо­ми­нал собой боль­шую стопку гра­фи­то­вых бло­ков, поло­жен­ных один на другой.

Между бло­ками была поме­щены шаро­об­раз­ные “рабо­чие тела”, из при­род­ного урана и его диоксида.

В СССР пер­вый реак­тор был построен под руко­вод­ством ака­де­мика И. В. Кур­ча­това. Реак­тор Ф-1 был зара­бо­тал 25 декабря 1946 г. Реак­тор был в форме шара, имел в диа­метре около 7,5 мет­ров. Он не имел системы охла­жде­ния, поэтому рабо­тал на очень малых уров­нях мощности.


Иссле­до­ва­ния про­дол­жи­лись и в 27 июня 1954 года всту­пила в строй пер­вая в мире атом­ная элек­тро­стан­ция мощ­но­стью 5 МВт в г. Обнинске.

Прин­цип дей­ствия атом­ного реактора.

При рас­паде урана U 235 про­ис­хо­дит выде­ле­ние тепла, сопро­вож­да­е­мое выбро­сом двух-трех ней­тро­нов. По ста­ти­сти­че­ским дан­ным - 2,5. Эти ней­троны стал­ки­ва­ются с дру­гими ато­мами урана U 235 . При столк­но­ве­нии уран U 235 пре­вра­ща­ется в неста­биль­ный изо­топ U 236 , кото­рый прак­ти­че­ски сразу же рас­па­да­ется на Kr 92 и Ba 141 + эти самые 2–3 ней­трона. Рас­пад сопро­вож­да­ется выде­ле­нием энер­гии в виде гамма излу­че­ния и тепла.

Это и назы­ва­ется цеп­ная реак­ция. Атомы делятся, коли­че­ство рас­па­дов уве­ли­чи­ва­ется в гео­мет­ри­че­ской про­грес­сии, что в конеч­ном итоге при­во­дит к мол­ние­нос­ному, по нашим мер­кам высво­бож­де­нию огром­ного коли­че­ства энер­гии - про­ис­хо­дит атом­ный взрыв, как послед­ствие неуправ­ля­е­мой цеп­ной реакции.

Однако в ядер­ном реак­торе мы имеем дело с управ­ля­е­мой ядер­ной реак­цией. Как такая ста­но­вится воз­мож­ной - рас­ска­зано дальше.

Устрой­ство ядер­ного реактора.

В насто­я­щее время суще­ствует два типа ядер­ных реак­то­ров ВВЭР (водо-водяной энер­ге­ти­че­ский реак­тор) и РБМК (реак­тор боль­шой мощ­но­сти каналь­ный). Отли­чие в том, что РБМК - кипя­щий реак­тор, а ВВЭР исполь­зует воду под дав­ле­нием в 120 атмосфер.

Реак­тор ВВЭР 1000. 1 - при­вод СУЗ; 2 - крышка реак­тора; 3 - кор­пус реак­тора; 4 - блок защит­ных труб (БЗТ); 5 - шахта; 6 - выго­родка актив­ной зоны; 7 - топ­лив­ные сборки (ТВС) и регу­ли­ру­ю­щие стержни;

Каж­дый ядер­ный реак­тор про­мыш­лен­ного типа пред­став­ляет собой котел, сквозь кото­рый про­те­кает теп­ло­но­си­тель. Как пра­вило это обыч­ная вода (ок. 75% в мире), жид­кий гра­фит (20%) и тяже­лая вода (5%). В экс­пе­ри­мен­таль­ных целях исполь­зо­вался бери­лий и пред­по­ла­гался углеводород.

ТВЭЛ - (теп­ло­вы­де­ля­ю­щий эле­мент). Это стержни в цир­ко­ни­е­вой обо­лочке с нио­бий­ным леги­ро­ва­нием, внутри кото­рых рас­по­ло­жены таб­летки из диок­сида урана.

ТВЭЛы в кас­сете выде­лены зеленым.


Топ­лив­ная кас­сета в сборе.

Актив­ная зона реак­тора состоит из сотен кас­сет, постав­лен­ных вер­ти­кально и объ­еди­нен­ных вме­сте метал­ли­че­ской обо­лоч­кой - кор­пу­сом, игра­ю­щим также роль отра­жа­те­лем ней­тро­нов. Среди кас­сет, с регу­ляр­ной часто­той встав­лены управ­ля­ю­щие стержни и стержни ава­рий­ной защиты реак­тора, кото­рые в слу­чае пере­грева при­званы заглу­шить реактор.

При­ве­дем в при­мер дан­ные по реак­тору ВВЭР-440:

Управ­ля­ю­щие могут пере­ме­щаться вверх и вниз погру­жа­ясь или наобо­рот, выходя из актив­ной зоны, где реак­ция идет интен­сив­нее всего. Это обес­пе­чи­вают мощ­ные элек­тро­мо­торы, в сово­куп­но­сти с систе­мой управления.Стержни ава­рий­ной защиты при­званы заглу­шить реак­тор в слу­чает нештат­ной ситу­а­ции, упав в актив­ную зону и погло­тив больше коли­че­ство сво­бод­ных нейтронов.

Каж­дый реак­тор имеет крышку, через кото­рую про­из­во­дится погрузка и выгрузка отра­бо­тав­ших и новых кассет.

Поверх кор­пуса реак­тора обычно уста­нав­ли­ва­ется теп­ло­изо­ля­ция. Сле­ду­ю­щим барье­ром идет био­ло­ги­че­ская защита. Это как пра­вило желе­зо­бе­тон­ный бун­кер, вход в кото­рый закры­ва­ется шлю­зо­вой каме­рой с гер­ме­тич­ными дверьми. Био­ло­ги­че­ская защита при­звана не выпу­стить в атмо­сферу радио­ак­тив­ный пар и куски реак­тора, если все таки про­изой­дет взрыв.

Ядер­ный взрыв в совре­мен­ных реак­тора крайне мало воз­мо­жен. Потому что топ­ливо доста­точно мало обо­га­щено, и раз­де­лено на ТВЕЛы. Даже если рас­пла­вится актив­ная зона, топ­ливо не смо­жет настолько активно про­ре­а­ги­ро­вать. Маси­мум что может про­изойти - теп­ло­вой взрыв как на Чер­но­быле, когда дав­ле­ние в реак­торе достигло таких вели­чин, что метал­ли­че­ский кор­пус про­сто разо­рвало, а крышка реак­тора, весом в 5000 тонн сде­лала пры­жок с пере­во­ро­том, про­бив крышу реак­тор­ного отсека и выпу­стив пар наружу. Если бы чер­но­быль­ская АЭС была осна­щена пра­виль­ной био­ло­ги­че­ской защи­той, напо­до­бие сего­дняш­него сар­ко­фага, то ката­строфа обо­шлась чело­ве­че­ству намного дешевле.

Работа атом­ной электростанции.

Если в двух сло­вах, то рабо­боа выгля­дит так.

Атом­ная элек­тро­стан­ция. (Кликабельно)

После поступ­ле­ния в актив­ную зону реак­тора с помо­щью насо­сов, вода нагре­ва­ется с 250 до 300 гра­ду­сов и выхо­дит с “дру­гой сто­роны” реак­тора. Это назы­ва­ется пер­вым кон­ту­ром. После чего направ­ля­ется в теп­л­об­мен­ник, где встре­ча­ется со вто­рым кон­ту­ром. После чего пар под дав­ле­нием посту­пает на лопатки тур­бин. Тур­бины выра­ба­ты­вают электричество.

Цепная реакция деления всегда сопровождается выделением энергии огромной величины. Практическое использование этой энергии – основная задача ядерного реактора.

Ядерный реактор – это устройство, в котором осуществляется контролируемая, или управляемая, ядерная реакция деления .

По принципу работы ядерные реакторы делят на две группы: реакторы на тепловых нейтронах и реакторы на быстрых нейтронах.

Как устроен ядерный реактор на тепловых нейтронах

В типичном ядерном реакторе имеются:

  • Активная зона и замедлитель;
  • Отражатель нейтронов;
  • Теплоноситель;
  • Система регулирования цепной реакции, аварийная защита;
  • Система контроля и радиационной защиты;
  • Система дистанционного управления.

1 - активная зона; 2 - отражатель; 3 - защита; 4 - регулирующие стержни; 5 - теплоноситель; 6 - насосы; 7 - теплообменник; 8 - турбина; 9 - генератор; 10 - конденсатор.

Активная зона и замедлитель

Именно в активной зоне и протекает контролируемая цепная реакция деления.

Большинство ядерных реакторов работает на тяжёлых изотопах урана-235. Но в природных образцах урановой руды его содержание составляет всего лишь 0,72%. Этой концентрации недостаточно для того, чтобы цепная реакция развивалась. Поэтому руду искусственно обогащают, доводя содержание этого изотопа до 3%.

Делящееся вещество, или ядерное топливо, в виде таблеток помещается в герметично закрытые стержни, которые называются ТВЭЛы (тепловыделяющие элементы). Они пронизывают всю активную зону, заполненную замедлителем нейтронов.

Зачем нужен замедлитель нейтронов в ядерном реакторе?

Дело в том, что рождающиеся после распада ядер урана-235 нейтроны имеют очень высокую скорость. Вероятность их захвата другими ядрами урана в сотни раз меньше вероятности захвата медленных нейтронов. И если не уменьшить их скорость, ядерная реакция может затухнуть со временем. Замедлитель и решает задачу снижения скорости нейтронов. Если на пути быстрых нейтронов разместить воду или графит, их скорость можно искусственно снизить и увеличить таким образом число захватываемых атомами частиц. При этом для цепной реакции в реакторе понадобится меньшее количество ядерного топлива.

В результате процесса замедления образуются тепловые нейтроны , скорость которых практически равна скорости теплового движения молекул газа при комнатной температуре.

В качестве замедлителя в ядерных реакторах используется вода, тяжёлая вода (оксид дейтерия D 2 O ), бериллий, графит. Но наилучшим замедлителем является тяжелая вода D 2 O.

Отражатель нейтронов

Чтобы избежать утечки нейтронов в окружающую среду, активную зону ядерного реактора окружают отражателем нейтронов . В качестве материала для отражателей часто используют те же вещества, что и в замедлителях.

Теплоноситель

Тепло, выделяющееся во время ядерной реакции, отводится с помощью теплоносителя. В качестве теплоносителя в ядерных реакторах часто используют обычную природную воду, предварительно очищенную от различных примесей и газов. Но поскольку вода закипает уже при температуре 100 0 С и давлении 1 атм, то для того чтобы повысить температуру кипения, повышают давление в первом контуре теплоносителя. Вода первого контура, циркулирующая через активную зону реактора, омывает ТВЭЛы, нагреваясь при этом до температуры 320 0 С. Далее внутри теплообменника она отдаёт тепло воде второго контура. Обмен проходит через теплообменные трубки, поэтому соприкосновения с водой второго контура не происходит. Это исключает попадание радиоактивных веществ во второй контур теплообменника.

А далее всё происходит так, как на тепловой электростанции. Вода во втором контуре превращается в пар. Пар вращает турбину, которая приводит в движение электрогенератор, который и вырабатывает электрический ток.

В тяжеловодных реакторах теплоносителем служит тяжёлая вода D 2 O, а в реакторах с жидкометаллическими теплоносителями - расплавленный металл.

Система регулирования цепной реакции

Текущее состояние реактора характеризует величина, называемая реактивностью.

ρ = ( k -1)/ k ,

k = n i / n i -1 ,

где k – коэффициент размножения нейтронов,

n i - количество нейтронов следующего поколения в ядерной реакции деления,

n i -1 , - количество нейтронов предыдущего поколения в этой же реакции.

Если k ˃ 1 , цепная реакция нарастает, система называется надкритическо й. Если k < 1 , цепная реакция затухает, а система называется подкритической . При k = 1 реактор находится в стабильном критическом состоянии , так как число делящихся ядер не меняется. В этом состоянии реактивность ρ = 0 .

Критическое состояние реактора (необходимый коэффициент размножения нейтронов в ядерном реакторе) поддерживается перемещением регулирующих стержней . В материал, из которого они изготовлены, входят вещества-поглотители нейтронов. Выдвигая или вдвигая эти стержни в активную зону, контролируют скорость реакции ядерного деления.

Система управления обеспечивает управление реактором при его пуске, плановой остановке, работе на мощности, а также аварийную защиту ядерного реактора. Это достигается изменением положения управляющих стержней.

Если какой-нибудь из параметров реактора (температура, давление, скорость нарастания мощности, расход топлива и др.) отклоняется от нормы, и это может привести к аварии, в центральную часть активной зоны сбрасываются специальные аварийные стержни и происходит быстрое прекращение ядерной реакции.

За тем, чтобы параметры реактора соответствовали нормам, следят системы контроля и радиационной защиты .

Для защиты окружающей среды от радиоактивного излучения реактор помещают в толстый бетонный корпус.

Системы дистанционного управления

Все сигналы о состоянии ядерного реактора (температуре теплоносителя, уровне излучения в разных частях реактора и др.) поступают на пульт управления реактора и обрабатываются в компьютерных системах. Оператор получает всю необходимую информацию и рекомендации по устранению тех или иных отклонений.

Реакторы на быстрых нейтронах

Отличие реакторов этого типа от реакторов на тепловых нейтронах в том, что быстрые нейтроны, возникающие после распада урана-235 не замедляются, а поглощаются ураном-238 с последующим превращением его в плутоний-239. Поэтому реакторы на быстрых нейтронах используют для получения оружейного плутония-239 и тепловой энергии, которую генераторы атомной станции преобразуют в электрическую энергию.

Ядерным топливом в таких реакторах служит уран-238, а сырьём уран-235.

В природной урановой руде 99,2745 % приходятся на долю урана-238. При поглощении теплового нейтрона он не делится, а становится изотопом урана-239.

Через некоторое время после β-распада уран-239 превращается в ядро нептуния-239:

239 92 U → 239 93 Np + 0 -1 e

После второго β-распада образуется делящийся плутоний-239:

239 9 3 Np → 239 94 Pu + 0 -1 e

И, наконец, после альфа-распада ядра плутония-239 получают уран-235:

239 94 Pu → 235 92 U + 4 2 He

ТВЭЛы с сырьём (обогащённым ураном-235) располагаются в активной зоне реактора. Эта зона окружена зоной воспроизводства, которая представляет собой ТВЭЛы с топливом (обедненным ураном-238). Быстрые нейтроны, вылетающие из активной зоны после распада урана-235, захватываются ядрами урана-238. В результате образуется плутоний-239. Таким образом, в реакторах на быстрых нейтронах производится новое ядерное топливо.

В качестве теплоносителей в ядерных реакторах на быстрых нейтронах применяют жидкие металлы или их смеси.

Классификация и применение ядерных реакторов

Основное применение ядерные реакторы нашли на атомных электростанциях. С их помощью получают электрическую и тепловую энергию в промышленных масштабах. Такие реакторы называют энергетическими .

Широко используются ядерные реакторы в двигательных установках современных атомных подводных лодок, надводных кораблей, в космической технике. Они снабжают электрической энергией двигатели и называются транспортными реакторами .

Для научных исследований в области ядерной физики и радиационной химии используют потоки нейтронов, гамма-квантов, которые получают в активной зоне исследовательских реакторов. Энергия, вырабатываемая ими, не превышает 100 Мвт и не используется в промышленных целях.

Мощность экспериментальных реакторов ещё меньше. Она достигает величины лишь нескольких кВт. На этих реакторах изучаются различные физические величины, значение которых важно при проектировании ядерных реакций.

К промышленным реакторам относят реакторы для получения радиоактивных изотопов, используемых для медицинских целей, а также в различных областях промышленности и техники. Реакторы для опреснения морской воды также относятся к промышленным реакторам.

I. Устройство ядерного реактора

Ядерный реактор состоит из следующих пяти основных элементов:

1) ядерного горючего;

2) замедлителя нейтронов;

3) системы регулирования;

4) системы охлаждения;

5) защитного экрана.

1. Ядерное горючее.

Ядерное горючее является источником энергии. В настоящее время известны три вида расщепляющихся материалов:

а) уран 235, который составляет в природном уране 0,7 %, или 1/140 часть;

6) плутоний 239, который образуется в некоторых реакторах на базе урана 238, составляющего почти всю массу природного урана (99,3 %, или 139 /140 частей).

Захватывая, нейтроны, ядра урана 238 превращаются в ядра нептуния - 93-го элемента периодической системы Менделеева; последние в свою очередь превращаются в ядра плутония - 94-го элемента периодической системы. Плутоний легко извлекается из облученного урана химическим путем и может быть использован в качестве ядерного горючего;

в) уран 233, представляющий собой искусственный изотоп урана, получаемый из тория.

В отличие от урана 235, который содержится в природном уране, плутоний 239 и уран 233 получаются только искусственным путем. Поэтому их называют вторичным ядерным горючим; источником получения такого горючего служат уран 238 и торий 232.

Таким образом, среди всех перечисленных выше видов ядерного горючего основным является уран. Этим и объясняется тот громадный размах, который принимают во всех странах поиски и разведка урановых месторождений.

Энергию, выделяющуюся в ядерном реакторе, сравнивают иногда с той, которая выделяется при химической реакции горения. Однако между ними существует принципиальное различие.

Количество тепла, получаемое в процессе деления урана, неизмеримо больше количества тепла, получаемого при сгорании, например, каменного угля: 1 кг урана 235, равный по объему пачке сигарет, теоретически мог бы дать столько же энергии, сколько 2600 т каменного угля.

Однако эти энергетические возможности используются не полностью, поскольку не весь уран 235 удается отделить от природного урана. В результате 1 кг урана в зависимости от степени его обогащения ураном 235 эквивалентен в настоящее время примерно 10 т каменного угля. Но следует учесть, что использование ядерного горючего облегчает транспортировку и, следовательно, значительно снижает себестоимость топлива. Английские специалисты подсчитали, что путем обогащения урана они смогут добиться увеличения получаемого в реакторах тепла в 10 раз, что приравняет 1 т урана к 100 тыс. т каменного угля.

Второе отличие процесса деления ядер, идущего с выделением тепла, от химического горения заключается в том, что для реакции горения необходим кислород, в то время как для возбуждения цепной реакции требуется лишь несколько нейтронов и определенная масса ядерного топлива, равная критической массе, определение которой мы уже давали в разделе об атомной бомбе.

И, наконец, невидимый процесс деления ядер сопровождается испусканием чрезвычайно вредных излучений, от которых необходимо обеспечить защиту.

2. Замедлитель нейтронов.

Для того чтобы избежать распространения в реакторе продуктов распада, ядерное горючее должно быть помещено в специальные оболочки. Для изготовления таких оболочек можно использовать алюминий (температура охладителя при этом не должна превышать 200°), а еще лучше бериллий или цирконий - новые металлы, получение которых в чистом виде сопряжено с большими трудностями.

Образующиеся в процессе деления ядер нейтроны (в среднем 2–3 нейтрона при делении одного ядра тяжелого элемента) обладают определенной энергией. Для того чтобы вероятность расщепления нейтронами других ядер была наибольшей, без чего реакция не будет самоподдерживающейся, необходимо, чтобы эти нейтроны потеряли часть своей скорости. Это достигается путем помещения в реактор замедлителя, в котором быстрые нейтроны в результате многочисленных последовательных столкновений превращаются в медленные. Поскольку вещество, используемое в качестве замедлителя, должно иметь ядра с массой, примерно равной массе нейтронов, то есть ядра легких элементов, в качестве замедлителя с самого начала применялась тяжелая вода (D 2 0, где D - дейтерий, заместивший легкий водород в обычной воде Н 2 0). Однако теперь стараются все больше и больше использовать графит - он дешевле и дает почти тот же эффект.

Тонна тяжелой воды, покупаемой в Швеции, обходится в 70–80 млн. франков. На Женевской конференции по мирному использованию атомной энергии американцы заявили, что в скором времени они смогут продавать тяжелую воду по цене 22 млн. франков за тонну.

Тонна графита стоит 400 тыс. франков, а тонна окиси бериллия - 20 млн. франков.

Вещество, используемое в качестве замедлителя, должно быть чистым, чтобы избежать потерь нейтронов при их прохождении через замедлитель. В конце пробега нейтроны имеют среднюю скорость около 2200 м/сек, в то время как их начальная скорость была порядка 20 тыс. км/сек. В реакторах выделение тепла происходит постепенно и может контролироваться в отличие от атомной бомбы, где оно происходит мгновенно и принимает характер взрыва.

В некоторых типах реакторов на быстрых нейтронах замедлитель не требуется.

3. Система регулирования.

Человек должен иметь возможность по своему желанию вызывать, регулировать и останавливать ядерную реакцию. Это достигается при помощи регулирующих стержней из бористой стали или из кадмия - материалов, обладающих способностью поглощать нейтроны. В зависимости от глубины, на которую регулирующие стержни опускаются в реактор, количество нейтронов в активной зоне увеличивается или уменьшается, что в конечном счете дает возможность регулировать процесс. Управление регулирующими стержнями осуществляется автоматически при помощи сервомеханизмов; некоторые из этих стержней в случае опасности могут мгновенно падать в активную зону.

Сначала высказывались опасения, что взрыв реактора причинит такой же ущерб, что и взрыв атомной бомбы. Для того чтобы доказать, что взрыв реактора происходит лишь в условиях, отличающихся от обычных, и не представляет серьезной опасности для живущего no соседству с атомным заводом населения, американцы намеренно взорвали один так называемый «кипящий» реактор. Действительно, произошел взрыв, который мы можем охарактеризовать как «классический», то есть неядерный; это лишний раз доказывает, что ядерные реакторы могут строиться вблизи населенных пунктов без особой опасности для последних.

4. Система охлаждения.

В процессе деления ядер выделяется определенная энергия, которая передается продуктам распада и образующимся нейтронам. Эта энергия в результате многочисленных столкновений нейтронов превращается в тепловую, поэтому для того, чтобы предупредить быстрый выход реактора из строя, тепло необходимо отводить. В реакторах, предназначенных для получения радиоактивных изотопов, это тепло не используется, в реакторах же, предназначенных для производства энергии, оно становится, наоборот, основным продуктом. Охлаждение может осуществляться при помощи газа или воды, которые циркулируют в реакторе под давлением по специальным трубкам и потом охлаждаются в теплообменнике. Отданное тепло может использоваться для нагревания пара, вращающего соединенную с генератором турбину; подобное устройство будет представлять собой атомную электростанцию.

5. Защитный экран.

Для того чтобы избежать вредного воздействия нейтронов, могущих вылететь за пределы реактора, и предохранить себя от испускаемого в процессе реакции гамма-излучения, необходима надежная защита. Ученые подсчитали, что реактор мощностью в 100 тыс. квт выделяет такое количество радиоактивных излучений, что человек, находящийся от него на расстоянии 100 м, получит за 2 мин. смертельную дозу. Для обеспечения защиты персонала, обслуживающего реактор, строятся двухметровые стены из специального бетона со свинцовыми плитами.

Первый реактор был построен в декабре 1942 года итальянцем Ферми. К концу 1955 года в мире насчитывалось около 50 ядерных реакторов (США -2 1, Англия - 4, Канада - 2, Франция - 2). К этому следует добавить, что к началу 1956 года было запроектировано еще около 50 реакторов для исследовательских и промышленных целей (США - 23, Франция - 4, Англия - 3, Канада - 1).

Типы этих реакторов очень разнообразны, начиная от реакторов на медленных нейтронах с графитовыми замедлителями и природным ураном в качестве топлива до реакторов, работающих на быстрых нейтронах и использующих в качестве топлива уран, обогащенный плутонием или ураном 233, получаемым искусственным путем из тория.

Кроме этих двух противоположных типов, существует еще целый ряд реакторов, различающихся между собой либо составом ядерного горючего, либо типом замедлителя, либо теплоносителем.

Очень важно отметить, что, хотя теоретическая сторона вопроса в настоящее время хорошо изучена специалистами во всех странах, в практической области различные страны не достигли еще одинакового уровня. Впереди других стран идут США и Россия. Можно утверждать, что будущее атомной энергии будет зависеть в основном от прогресса техники.

Из книги Удивительный мир внутри атомного ядра [лекция для школьников] автора Иванов Игорь Пьерович

Устройство коллайдера LHC Теперь несколько картинок. Коллайдер - это ускоритель встречных частиц. Там по двум кольцам ускоряются частицы и сталкиваются друг с другом. Это самая большая экспериментальная установка в мире, потому что длина этого кольца - туннеля -

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Атомная проблема автора Рэн Филипп

Из книги 5b. Электричество и магнетизм автора Фейнман Ричард Филлипс

Из книги автора

Глава VIII Принцип действия и возможности ядерного реактора I. Устройство ядерного реактора Ядерный реактор состоит из следующих пяти основных элементов:1) ядерного горючего;2) замедлителя нейтронов;3) системы регулирования;4) системы охлаждения;5) защитного

Из книги автора

Глава 11 ВНУТРЕННЕЕ УСТРОЙСТВО ДИЭЛЕКТРИКОВ §1. Молекулярные диполи§2. Электронная поляризация §3. Полярные молекулы; ориентационная поляризация§4. Электрические поля в пустотах диэлектрика§5. Диэлектрическая проницаемость жидкостей; формула Клаузиуса - Моссотти§6.