Значение тканевого уровня в органическом мире. Уровни организации живой природы: краткое описание

Организм человека находится в постоянном взаимодействии с абиотическими и биотическими факторами окружающей среды, которая влияет на него и изменяет его. Происхождение человека интересует науку уже давно, и теории его происхождения различны. Это и то, что человек произошел из маленькой клетки, которая постепенно, образуя колонии клеток себе подобных, стала многоклеточной и в процессе длительного хода эволюции превратилась в человекоподобную обезьяну, и которая благодаря труду стала человеком.

Понятие уровней организации организма человека

В процессе обучения в общеобразовательной средней школе на уроках биологии изучение живого организма начинается с изучения растительной клетки и ее компонентов. Уже в старших классах на уроках школьникам задают вопрос: «Назовите уровни организации организма человека». Что это такое?

Под понятием "уровни организации организма человека" принято понимать его иерархическое строение от маленькой клетки до организменного уровня. Но этот уровень - не предел, и его завершает уже надорганизменный порядок, который включает в себя популяционно-видовой и биосферный уровни.

Выделяя уровни организации организма человека, следует подчеркнуть их иерархию:

  1. Молекулярно-генетический уровень.
  2. Клеточный уровень.
  3. Тканевый уровень.
  4. Органный уровень
  5. Организменный уровень.

Молекулярно-генетический уровень

Изучение молекулярных механизмов позволяет охарактеризовать его такими компонентами, как:

  • носители генетической информации - ДНК, РНК.
  • биополимеры, это белки, жиры и углеводы.

На этом уровне выделяют структурным элементом гены и их мутации, которые определяют изменчивость на организменном и клеточном уровне.

Молекулярно-генетический уровень организации организма человека представлен генетическим материалом, который закодирован в цепочке ДНК и РНК. Генетическая информация отражает такие важные составляющие организации жизни человека, как заболеваемость, обменные процессы, тип конституции, гендерную составляющую и индивидуальные признаки человека.

Молекулярный уровень организации организма человека представлен обменными процессами, которые состоят из ассимиляции и диссимиляции, регуляции обмена веществ, гликолиза, кроссинговера и митоза, мейоза.

Свойство и строение молекулы ДНК

Основными свойствами генов являются:

  • конвариантная редупликация;
  • способность к локальным структурным изменениям;
  • передача наследственной информации на внутриклеточном уровне.

Молекула ДНК состоит из пуриновых и пиримидиновых оснований, которые соединены по принципу водородных связей между собой и для их соединения и разрыва требуется ферментная ДНК-полимераза. Конвариантная редупликация происходит по матричному принципу, который обеспечивает их соединение по остатку азотистых оснований гуанина, аденина, цитозина и тимина. Этот процесс происходит за 100 секунд, и за это время успевает собраться 40 тыс. пар нуклеотидов.

Клеточный уровень организации

Изучение клеточного строения организма человека поможет понять и охарактеризовать клеточный уровень организации организма человека. Клетка является структурным компонентом и состоит из элементов периодической системы Д. И. Менделеева, из которых наиболее преобладающими являются водород, кислород, азот и углерод. Остальные элементы представлены группой макроэлементов и микроэлементов.

Структура клетки

Клетка открыта была Р. Гуком в XVII веке. Основными структурными элементами клетки являются цитоплазматическая мембрана, цитоплазма, органоиды клетки и ядро. Цитоплазматическая мембрана состоит из фосфолипидов и белков как структурных компонентов для обеспечения клетки порами и каналами для осуществления обмена веществ между клетками и поступления, выведения веществ из них.

Клеточное ядро

Ядро клетки состоит из ядерной оболочки, ядерного сока, хроматина и ядрышек. Ядерная оболочка выполняет формообразующую и транспортную функцию. Ядерный сок содержит белки, которые участвуют в синтезе нуклеиновых кислот.

  • хранение генетической информации;
  • воспроизведение и передача ;
  • регуляция деятельности клетки в ее жизнеобеспечивающих процессах.

Цитоплазма клетки

Цитоплазма состоит из органелл общего назначения и специализированных. Органеллы общего назначения разделяются на мембранные и немембранные.

Основной функцией цитоплазмы является постоянство внутренней среды.

Мембранные органеллы:

  • Эндоплазматическая сеть. Основными ее задачами является синтез биополимеров, внутриклеточный транспорт веществ, является депо ионов Ca+.
  • Аппарат Гольджи. Синтезирует полисахариды, гликопротеиды, участвуют в синтезе белка после выхода его из эндоплазматической сети, осуществляет транспорт и ферментацию секрета в клетке.
  • Пероксисомы и лизосомы. Переваривают поглощенные вещества и расщепляют макромолекулы, нейтрализуют токсические вещества.
  • Вакуоли. Хранение веществ, продуктов обмена.
  • Митохондрии. Энергетические и дыхательные процессы внутри клетки.

Немембранные органеллы:

  • Рибосомы. Синтезируют белки при участии РНК, которая переносит из ядра генетическую информацию о строении и синтезе белка.
  • Клеточный центр. Участвует в делении клеток.
  • Микротрубочки и микрофиламенты. Осуществляют поддерживающую функцию и сократительную.
  • Реснички.

Специализированные органеллы - это акросома сперматозоида, микроворсинки тонкой кишки, микротрубочки и микрореснички.

Теперь на вопрос: «Охарактеризуйте клеточный уровень организации организма человека», можно смело перечислить компоненты и их роль в организации строения клетки.

Тканевый уровень

В организме человека нельзя выделить уровень организации, в котором не присутствовала бы какая-либо ткань, состоящая из специализированных клеток. Ткани складываются из клеток и межклеточного вещества и по своей специализации их подразделяют на:


  • Нервная. Осуществляет интеграцию внешней и внутренней среды, регулирует процессы обмена веществ и высшую нервную деятельность.

Уровни организации организма человека переходят плавно друг в друга и образуют целостный орган или систему органов, которые выстилают множество тканей. Например, желудочно-кишечный тракт, который имеет трубчатое строение и состоит из серозного, мышечного и слизистого слоя. Кроме этого, он имеет питающие его кровеносные сосуды и нервно-мышечный аппарат, которым управляет нервная система, также множество ферментных и гуморальных систем управления.

Органный уровень

Все уровни организации организма человека, перечисленные ранее, являются компонентами органов. Органы выполняют специфические функции по обеспечению в организме постоянства внутренней среды, обмена веществ и образуют системы соподчиненных ей подсистем, которые выполняют определенную функцию организме. Например, дыхательная система состоит из легких, дыхательных путей, дыхательного центра.

Уровни организации организма человека как единое целое представляют собой интегрированную и полностью самообеспечивающуюся систему органов, образующую организм.

Организм как единое целое

Объединение систем и органов образуют организм, в котором осуществляется интеграция работы систем, обмен веществ, рост и размножение, пластичность, раздражимость.

Интеграция существует четырех видов: механическая, гуморальная, нервная и химическая.

Механическая интеграция осуществляется межклеточным веществом, соединительной тканью, вспомогательными органами. Гуморальная - кровь и лимфа. Нервная - это высший уровень интеграции. Химическая - гормонами эндокринных желез.

Уровни организации организма человека - это иерархическое усложнение в строении его организма. Организм как единое целое обладает телосложением - внешней интегрированной формой. Телосложение - это внешняя человека, которая имеет различные половые и возрастные особенности, строение и положение внутренних органов.

Различают астенические, нормостенические и гиперстенические типы строения телосложения, которые дифференцируются по росту, скелету, мускулатуре, наличию или отсутствию подкожного жира. Также в соответствии с типом телосложения системы органов имеют различное строение и положение, размеры и форму.

Понятие об онтогенезе

Индивидуальное развитие организма обусловлено не только генетическим материалом, но и внешними факторами окружающей среды. Уровни организации организма человека понятие об онтогенезе, или индивидуальном развитии организма в процессе своего развития, использует разные генетические материалы, участвующие в функционировании клетки в процессе развития ее. На работу генов влияет внешняя среда: через факторы окружающей среды происходит обновление, появление новых генетических программ, мутаций.

Например, гемоглобин изменяется трижды за все развитие человеческого организма. Белки, синтезирующие гемоглобин, проходят несколько стадий от эмбрионального гемоглобина, которые переходит в гемоглобин плода. В процессе созревания организма гемоглобин переходит в форму взрослого. Эти онтогенетические характеристики уровня развития организма человека кратко и понятно подчеркивают, что генетическая регуляция организма выполняет важную роль в процессе развития организма от клетки до систем и организма в целом.

Изучение организации позволяет ответить на вопрос: «Назовите уровни организации организма человека?». Организм человека регулируется не только нервно-гуморальными механизмами, но и генетическими, которые расположены в каждой клетке организма человека.

Уровни организации организма человека кратко можно описать как сложную соподчиненную систему, имеющую строение такое же по построению и усложнению, как и вся система живых организмов. Эта закономерность - эволюционно закрепленная особенность живых организмов.

УРОВНИ ОРГАНИЗАЦИИ ЖИЗНИ

Живая природа является целостной, но неоднородной системой, которой свойственна иерархическая организация. Под системой, в науке понимают единство, или целостность, составленное из множества элементов, которые находятся в закономерных отношениях и связях друг с другом. Главные биологические категории, такие, как геном (генотип), клетка, организм, популяция, биогеоценоз, биосфера, представляют собой системы. Иерархической называется система, в которой части, или элементы, расположены в порядке от низшего к высшему. Так, в живой природе биосфера слагается из биогеоценозов, представленных популяциями организмов разных видов, а тела организмов имеют клеточное строение.

Иерархический принцип организации позволяет выделить в живой природе отдельные уровни, что удобно с точки зрения изучения жизни как сложного природного явления.

В медико-биологической науке широко используют классификацию уровней в соответствии с важнейшими частями, структурами и компонентами организма, являющимися для исследователей разных специальностей непосредственными объектами изучения. Такими объектами могут быть организм как таковой, органы, ткани, клетки, внутриклеточные структуры, молекулы. Выделение уровней рассматриваемой классификации хорошо согласуется с разрешающей способностью методов, которыми пользуются биологи и врачи: изучение объекта невооруженным глазом, с помощью лупы, светооптического микроскопа, электронного микроскопа, современных физико-химических методов. Очевидна связь этих уровней и с типичными размерами изучаемых биологических объектов (табл. 1.1).

Таблица 1.1. Уровня организации (изучения), выделяемые в многоклеточном организме (по Э. Дс. Робертсу и др., 1967, с изменениями)

Взаимопроникновение идей и методов различных областей естествознания (физики, химии, биологии), возникновение наук на стыке этих областей (биофизика, биохимия, молекулярная биология) повлекли за собой расширение классификации, вплоть до выделения молекулярного и электронно-атомного уровней. Медико-биологические исследования, проводимые на этих уровнях, уже сейчас дают практический выход в здравоохранение. Так, приборы, основанные на явлениях электронного парамагнитного и ядерного магнитного резонанса, с успехом применяют для диагностики заболеваний и состояний организма.

Возможность исследовать фундаментальные биологические процессы, происходящие в организме, на клеточном, субклеточном и даже молекулярном уровнях является выдающейся, но не единственной отличительной чертой современной биологии. Для нее типичен углубленный интерес к процессам в сообществах организмов, которые определяют планетарную роль жизни.

Таким образом, классификация пополнилась надорганизменными уровнями, такими, как видовой, биогеоценотический, биосферный.

Разобранной выше классификации придерживается большинство конкретных медико-биологических и антропобиологических наук. Это неудивительно, так как она отражает уровни организации живой природы через исторически сложившиеся уровни ее изучения. В задачу курса биологии медицинского вуза входит преподать наиболее полную характеристику биологического «наследства» людей. Для решения этой задачи целесообразно воспользоваться классификацией, наиболее близко отражающей именно уровни организации жизни.

В названной классификации выделяются молекулярно-генетический, клеточный, Организменный, или онтогенетический, популяционно-видовой, биогеоценотический уровни. Особенность данной классификации заключается в том, что отдельные уровни иерархической системы жизни определяются в ней на общей основе выделения для каждого уровня элементарной единицы и элементарного явления. Элементарная единица - это структура или объект, закономерные изменения которых, обозначаемые как элементарное явление, составляют специфический для соответствующего уровня вклад в процесс сохранения и развития жизни. Соответствие выделяемых уровней узловым моментам эволюционного процесса, вне которого не стоит ни одно живое существо, делает их всеобщими, распространяющимися на всю область жизни, включая человека.

Элементарной единицей на молекулярно-генетическом уровне служит ген - фрагмент молекулы нуклеиновой кислоты, в котором записан определенный в качественном и количественном отношении объем биологической (генетической) информации. Элементарное явление заключается прежде всего в процессе конвариантной редупликации, или самовоспроизведении, с возможностью некоторых изменений в содержании закодированной в гене информации. Путем редупликации ДНК происходит копирование заключенной в генах биологической информации, что обеспечивает преемственность и сохранность (консерватизм) свойств организмов в ряду поколений. Редупликация, таким образом, является основой наследственности.

В силу ограниченной стабильности молекул или ошибок синтеза в ДНК (время от времени, но неизбежно) случаются нарушения, которые изменяют информацию генов. В последующей редупликации ДНК эти изменения воспроизводятся в молекулах-копиях и наследуются организмами дочернего поколения. Указанные изменения возникают и тиражируются закономерно, что и делает редупликацию ДНК конвариантной, т.е. происходящей иногда с некоторыми изменениями. Такие изменения в генетике получили название генных (или истинных) мутаций. Конвариантность редупликации, таким образом, служит основой мутационной изменчивости.

Биологическая информация, заключающаяся в молекулах ДНК, не участвует непосредственно в процессах жизнедеятельности. Она переходит в действующую форму, будучи перенесена в молекулы белков. Отмеченный перенос осуществляется благодаря механизму матричного синтеза, в котором исходная ДНК служит, как и в случае с редупликацией, матрицей (формой), но для образования не дочерней молекулы ДНК, а матричной РНК, контролирующей биосинтез белков. Отмеченное дает основание причислить матричный синтез информационных макромолекул также к элементарному явлению на молекулярно-генетическом уровне организации жизни.



Воплощение биологической информации в конкретные процессы жизнедеятельности требует специальных структур, энергии и разнообразных химических веществ (субстратов). Описанные выше условия в живой природе обеспечивает клетка, служащая элементарной структурой клеточного уровня. Элементарное явление представлено реакциями клеточного метаболизма, составляющими основу потоков энергии, веществ и информации. Благодаря деятельности клетки поступающие извне вещества превращаются в субстраты и энергию, которые используются (в соответствии с имеющейся генетической информацией) в процессе биосинтеза белков и других соединений, необходимых организму. Таким образом, на клеточном уровне сопрягаются механизмы передачи биологической информации и превращения веществ и энергии. Элементарное явление на этом уровне служит энергетической и вещественной основой жизни на всех других уровнях ее организации.

Элементарной единицей организме/того уровня является особь в ее развитии от момента зарождения до прекращения существования в качестве живой системы, что позволяет также назвать этот уровень онтогенетическим. Закономерные изменения организма в индивидуальном развитии составляют элементарное явление данного уровня. Эти изменения обеспечивают рост организма, дифференциацию его частей и одновременно интеграцию развития в единое целое, специализацию клеток, органов и тканей. В ходе онтогенеза в определенных условиях внешней среды происходит воплощение наследственной информации в биологические структуры и процессы, на основе генотипа формируется фенотип организмов данного вида.

Элементарной единицей популяционно-видового уровня служит популяция - совокупность особей одного вида. Объединение особей в популяцию происходит благодаря общности генофонда, используемого в процессе полового размножения для создания генотипов особей следующего поколения. Популяция в силу возможности межпопуляционных скрещиваний представляет собой открытую генетическую систему. Действие на генофонд популяции элементарных эволюционных факторов, таких, как мутационный процесс, колебания численности особей, естественный отбор, приводит к эволюционно значимым изменениям генофонда, которые представляют элементарные явления на данном уровне.

Организмы одного вида населяют территорию с известными абиотическими показателями (климат, химизм почв, гидрологические условия) и взаимодействуют с организмами других видов. В процессе совместного исторического развития на определенной территории организмов разных систематических групп образуются динамичные, устойчивые во времени сообщества - биогеоценозы, которые служат элементарной единицей биогеоценотического (экосистемного) уровня. Элементарное явление на рассматриваемом уровне представлено потоками энергии и круговоротами веществ. Ведущая роль в этих круговоротах и потоках принадлежит живым организмам. Биогеоценоз - это открытая в вещественном и энергетическом плане система. Биогеоценозы, различаясь по видовому составу и характеристикам абиотической своей части, объединены на планете в единый комплекс - область распространения жизни, или биосферу.

Приведенные выше уровни отражают важнейшие биологические явления, без которых невозможны эволюция и, следовательно, само существование жизни. Хотя элементарные единицы и явления на выделяемых уровнях различны, все они тесно взаимосвязаны, решая свою специфическую задачу в рамках единого эволюционного процесса. С конвариантной редупликацией на молекулярно-генетическом уровне связаны элементарные основы этого процесса в виде явлений наследственности и истинной мутационной изменчивости. Особая роль клеточного уровня состоит в энергетическом, вещественном и информационном обеспечении происходящего на всех других уровнях. На онтогенетическом уровне биологическая информация, находящаяся в генах, преобразуется в комплекс признаков и свойств организма. Возникающий таким образом фенотип становится доступным действию естественного отбора. На популяционно-видовом уровне определяется эволюционная ценность изменений, относящихся к молекулярно-генетическому, клеточному и онтогенетическому уровням. Специфическая роль биогеоценотического уровня состоит в образовании сообществ организмов разных видов, приспособленных к совместному проживанию в определенной среде обитания. Важной отличительной чертой таких сообществ является их устойчивость во времени.

Рассмотренные уровни отражают общую структуру эволюционного процесса, закономерным результатом которого является человек. Поэтому типичные для этих уровней элементарные структуры и явления распространяются и на людей, правда, с некоторыми особенностями в силу их социальной сущности.

Процесс «трансляции» на­след­ствен­ной ин­фор­ма­ции про­ис­хо­дит на уров­не ор­га­ни­за­ции жизни

1) клеточном

2) организменном

3) биогеоценотическом

4) молекулярном

Пояснение.

События на клеточном уровне обеспечивают биоинформационное и вещественно-энергетическое сопровождение феномена жизни на всех уровнях ее организации. Сегодня наукой достоверно установлено, что наименьшей самостоятельной единицей строения, функционирования и развития живого организма является клетка, которая представляет собой элементарную биологическую систему, способную к самообновлению, самовоспроизведению и развитию. В клетке сохраняется и воплощается в процессы жизнедеятельности биологическая (генетическая, наследственная) информация - ДНК, матричный механизм репликации ДНК и синтеза белков .

Про­цесс транс­ля­ции - про­цесс син­те­за белка из ами­но­кис­лот на мат­ри­це иРНК (мРНК), осу­ществ­ля­е­мый ри­бо­со­мой. Участ­ву­ют не­сколь­ко ком­по­нен­тов клет­ки, по­это­му ответ - на кле­точ­ном уров­не ор­га­ни­за­ции.

Ответ: 1

Раздел: Основы цитологии

Гость 26.05.2014 18:14

Здравствуйте. Разве про­цесс трансляции на­след­ствен­ной информации про­ис­хо­дит на кле­точ­ном уровне? Мне ка­жет­ся на молекулярном. Не­сколь­ко выше был по­доб­ный вопрос и там ука­зан молекулярный уро­вень организации.

Наталья Евгеньевна Баштанник

На молекулярно-генетическом уровне протекают важнейшие процессы жизнедеятельности - кодирование, передача и реализация наследственной информации. На этом же уровне организации жизни осуществляется процесс изменения наследственной информации.

На органоидно-клеточном уровне протекают важнейшие процессы жизнедеятельности: обмен веществ (в том числе и и биосинтез белка - ТРАНСЛЯЦИЯ) и превращение энергии в клетке, ее рост, развитие и деление.

Гость 23.03.2015 19:21

На молекулярном уровне происходят такие процессы как: передача генетической информации - репликация, транскрипция, трансляция.

На клеточном уровне происходит процессы такие как: клеточный метаболизм, жизненные циклы и деление, которые регулируются белками-ферментам.

(Информация на основе "Сборника разноуровневых заданий для подготовки к ЕГЭ". Автор сборника - А.А.Кириленко)

Наталья Евгеньевна Баштанник

Молекулярный уровень. Основу организации на этом уровне представляют 4 азотистых основания, 20 аминокислот, несколько сотен тысяч биохимических реакций, почти все из которых сопряжены с синтезом или разложением АТФ -- универсального энергетического компонента живого.

Клеточный уровень. Клетка является минимальной единицей жизни. Все живое состоит из клеток. Основные механизмы воспроизводства жизни работают именно на клеточном уровне.

На клеточном уровне происходит два основных процесса, необходимых для самовоспроизведения жизни - митоз - деление клетки с сохранением числа хромосом и генов, и мейоз - редукционное деление, необходимое для производства половых клеток - гамет.

Биология. Общая биология. 10 класс. Базовый уровень Сивоглазов Владислав Иванович

3. Уровни организации живой материи. Методы биологии

Вспомните!

Какие уровни организации живой материи вам известны?

Какие вы знаете методы научных исследований?

Уровни организации живой материи. Окружающий нас мир живых существ – это совокупность биологических систем разной степени сложности, образующих единую иерархическую структуру. Причём следует отчётливо представлять, что взаимосвязь отдельных биологических систем, принадлежащих к одному уровню организации, формирует качественно новую систему. Одна клетка и множество клеток, один организм и группа организмов – разница не только в количестве. Совокупность клеток, обладающих общим строением и функцией, – это качественно новое образование – ткань. Группа организмов – это семья, стая, популяция, т. е. система, обладающая совершенно иными свойствами, нежели простое механическое суммирование свойств нескольких особей.

В процессе эволюции происходило постепенное усложнение организации живой материи. При образовании более сложного уровня предыдущий уровень, возникший ранее, входил в него как составная часть. Именно поэтому уровневая организация и эволюция являются отличительными признаками живой природы. В настоящее время жизнь как особая форма существования материи представлена на нашей планете несколькими уровнями организации (рис. 4).

Молекулярно-генетический уровень. Как бы сложно ни была организована любая живая система, в её основе лежит взаимодействие биологических макромолекул: нуклеиновых кислот, белков, углеводов, а также других органических и неорганических веществ. С этого уровня начинаются важнейшие процессы жизнедеятельности организма: кодирование и передача наследственной информации, обмен веществ, превращение энергии.

Клеточный уровень. Клетка – это структурно-функциональная единица всего живого. Существование клетки лежит в основе размножения, роста и развития живых организмов. Вне клетки жизни нет, а существование вирусов только подтверждает это правило, потому что они могут реализовывать свою наследственную информацию только в клетке.

Рис. 4. Уровни организации живой материи

Тканевый уровень. Ткань – это совокупность клеток и межклеточного вещества, объединённых общностью происхождения, строения и выполняемой функции. В животных организмах выделяют четыре основных типа ткани: эпителиальную, соединительную, мышечную и нервную. В растениях различают образовательные, покровные, проводящие, механические, основные и выделительные (секреторные) ткани.

Органный уровень. Орган – это обособленная часть организма, имеющая определённую форму, строение, расположение и выполняющая конкретную функцию. Орган, как правило, образован несколькими тканями, среди которых одна (две) преобладает.

Организменный (онтогенетический ) уровень. Организм – это целостная одноклеточная или многоклеточная живая система, способная к самостоятельному существованию. Многоклеточный организм образован, как правило, совокупностью тканей и органов. Существование организма обеспечивается путём поддержания гомеостаза (постоянства структуры, химического состава и физиологических параметров) в процессе взаимодействия с окружающей средой.

Популяционно-видовой уровень. Популяция – совокупность особей одного вида, в течение длительного времени проживающих на определённой территории, внутри которой осуществляется в той или иной степени случайное скрещивание и нет существенных внутренних изоляционных барьеров; она частично или полностью изолирована от других популяций данного вида.

Вид – совокупность особей, сходных по строению, имеющих общее происхождение, свободно скрещивающихся между собой и дающих плодовитое потомство. Все особи одного вида имеют одинаковый кариотип, сходное поведение и занимают определённый ареал.

На этом уровне осуществляется процесс видообразования, который происходит под действием эволюционных факторов.

Биогеоценотический (экосистемный ) уровень. Биогеоценоз – исторически сложившаяся совокупность организмов разных видов, взаимодействующая со всеми факторами их среды обитания. В биогеоценозах осуществляется круговорот веществ и энергии.

Биосферный (глобальный ) уровень. Биосфера – биологическая система высшего ранга, охватывающая все явления жизни в атмосфере, гидросфере и литосфере. Биосфера объединяет все биогеоценозы (экосистемы) в единый комплекс. В ней происходят все вещественно – энергетические круговороты, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле.

Таким образом, жизнь на нашей планете представлена саморегулирующимися и самовоспроизводящимися системами различного ранга, открытыми для вещества, энергии и информации. Происходящие в них процессы жизнедеятельности и развития обеспечивают существование и взаимодействие этих систем.

На каждом уровне организации живой материи существуют свои специфические особенности, поэтому в любых биологических исследованиях, как правило, какой-то определённый уровень является ведущим. Так, например, механизмы деления клетки изучают на клеточном уровне, а основные успехи в области генной инженерии достигнуты на молекулярно-генетическом. Но такое разделение проблем по уровням организации является весьма условным, потому что большинство задач биологии так или иначе касаются одновременно нескольких уровней, а порой и всех сразу. Например, проблемы эволюции затрагивают все уровни организации, а методы генной инженерии, реализуемые на молекулярно-генетическом уровне, направлены на изменение свойств всего организма.

Методы познания живой природы. Исследуя системы разной степени сложности, биология использует разнообразные методы и приёмы. Одним из наиболее древних является метод наблюдения , на котором основывается описательный метод . Сбор фактического материала и его описание были основными приёмами исследования на раннем этапе развития биологии. Но и в настоящее время они не утратили своего значения. Эти методы широко используют зоологи, ботаники, микологи, экологи и представители многих других биологических специальностей.

В XVIII в. в биологии стал широко применяться сравнительный метод , который позволял в процессе сопоставления объектов выявлять сходства и различия организмов и их частей. Благодаря этому методу были заложены основы систематики растений и животных, создана клеточная теория. Применение этого метода в анатомии, эмбриологии, палеонтологии способствовало утверждению в биологии эволюционной теории развития.

Исторический метод позволяет сравнить существующие факты с данными, известными ранее, выявить закономерности появления и развития организмов, усложнения их структуры и функций.

Огромное значение для развития биологии имел экспериментальный метод , его первое применение связывают с именем римского врача Галена (II в. н. э.). Гален впервые продемонстрировал участие нервной системы в организации поведения и в работе органов чувств. Однако широко использоваться этот метод начал лишь с XIX в. Классическим образцом применения экспериментального метода являются работы И. М. Сеченова по физиологии нервной деятельности и Г. Менделя по изучению наследования признаков.

В настоящее время биологи всё чаще используют метод моделирования , позволяющий воспроизвести такие экспериментальные условия, которые в реальности воссоздать порой не представляется возможным. С помощью компьютерного моделирования, например, можно рассчитать последствия постройки плотины для определённой экосистемы или воссоздать эволюцию определённого вида живых организмов. Меняя параметры, можно выбрать оптимальный путь развития агроценоза или подобрать наиболее безопасное сочетание лекарственных препаратов при лечении конкретного заболевания.

Любое научное исследование, использующее разные методы, состоит из нескольких этапов. Сначала в результате наблюдений собирают данные – факты , на основе которых выдвигают гипотезу . Для того чтобы оценить верность этой гипотезы, осуществляют серии экспериментов с целью получения новых результатов. Если гипотеза подтверждается, она может стать теорией , включающей в себя определённые правила и законы .

При решении биологических задач используют самую разнообразную технику: световые и электронные микроскопы, центрифуги, химические анализаторы, термостаты, компьютеры и множество других современных приборов и инструментов.

Настоящую революцию в биологических исследованиях произвело появление электронного микроскопа, в котором вместо светового пучка используют пучок электронов. Разрешающая способность такого микроскопа в 100 раз выше, чем светового.

Одним из видов электронного микроскопа является сканирующий. В нём электронный луч не проходит через образец, а отражается от него и преобразуется в изображение на телеэкране. Это позволяет получать трёхмерное изображение исследуемого объекта.

Вопросы для повторения и задания

1. Как вы считаете, почему необходимо выделять различные уровни организации живой материи?

2. Перечислите и охарактеризуйте уровни организации живой материи.

3. Назовите биологические макромолекулы, входящие в состав живых систем.

4. Как проявляются свойства живого на различных уровнях организации?

5. Какие методы исследования живой материи вы знаете?

6. Может ли многоклеточный организм не иметь тканей и органов? Если вы считаете, что может, приведите примеры таких организмов.

Рис. 5. Амёба под микроскопом

Подумайте! Выполните!

1. Выделите основные признаки понятия «биологическая система».

2. Согласны ли вы с тем, что описательный период в биологии продолжается и в XXI в.? Ответ обоснуйте.

3. Рассмотрите рис. 5. Определите, какое изображение было получено при помощи световой микроскопии, какое – при помощи электронной, а какое – результат использования сканирующего микроскопа. Объясните свой выбор.

4. Из предыдущих курсов биологии, физики, химии или других предметов вспомните какую-нибудь хорошо известную вам теорию (закон или правило). Попробуйте описать основные этапы её (его) формирования.

5. Используя дополнительную литературу и ресурсы Интернета, подготовьте презентацию или красочный стенд на тему «Современное научное оборудование и его роль в решении биологических задач». С каким оборудованием вы уже познакомились при изучении курса «Человек и его здоровье»? Для каких целей его используют? Можно ли медицинское оборудование считать биологическим? Объясните свою точку зрения.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Повторите и вспомните!

Растения

Появление тканей и органов растений. Появление тканей и органов в эволюции растений было связано с выходом на сушу. У водорослей отсутствуют органы и специализированные ткани, так как все их клетки находятся в одинаковых условиях (температурный режим, освещённость, минеральное питание, газообмен). Каждая клетка водоросли обычно содержит хлоропласты и способна к фотосинтезу.

Однако, выйдя на сушу, предки современных высших растений попали в совершенно иные условия: кислород, необходимый для дыхания, и углекислый газ, используемый для фотосинтеза, растения должны были получать из воздуха, а воду – из почвы. Новая среда обитания не была однородной. Возникли проблемы, которые надо было решать: защита от высыхания, поглощение воды из почвы, создание механической опоры, сохранение спор. Существование растений на границе двух сред – почвы и воздуха – привело к возникновению полярности: нижняя часть растения, погружаясь в почву, поглощала воду с растворёнными в ней минеральными веществами, верхняя часть, оставаясь на поверхности, активно фотосинтезировала и обеспечивала всё растение органическими веществами. Так появились два основных вегетативных органа современных высших растений – корень и побег.

Такое расчленение тела растений на отдельные органы, усложнение их структуры и функций происходило постепенно в процессе длительной эволюции растительного мира и сопровождалось усложнением тканевой организации.

Первой появилась покровная ткань, обеспечившая защиту растения от высыхания и повреждений. Подземная и наземная части растения должны были иметь возможность обмениваться различными веществами. Вода с растворёнными в ней минеральными солями поднималась вверх из почвы, а органические вещества перемещались вниз, к подземным частям растения, не способным к фотосинтезу. Это требовало развития проводящих тканей – ксилемы и флоэмы. В воздушной среде надо было противостоять силам гравитации, выдерживать порывы ветра – это потребовало развития механической ткани.

У высших растений различают вегетативные и генеративные (репродуктивные) органы. Вегетативными органами высших растений являются корень и побег, состоящий из стебля, листьев и почек. Вегетативные органы обеспечивают фотосинтез и дыхание, рост и развитие, поглощение и проведение в теле растения воды и растворённых в ней минеральных солей, транспорт органических веществ, а также участвуют в вегетативном размножении.

Генеративные органы – это спорангии, спороносные колоски, шишки и цветки, образующие плоды и семена. Они появляются в определённые периоды жизни и выполняют функции, связанные с размножением растений.

Человек

Методы изучения человека. Одним из первых анатомических методов, начиная с эпохи Возрождения, был метод аутопсии (вскрытия трупов). Однако в настоящее время существует множество методов, которые позволяют изучать организм прижизненно: рентгеноскопия, ультразвуковое исследование, магнитно-резонансная томография и многие другие.

Основу всех физиологических методов составляют наблюдения и эксперименты . Современные физиологи успешно применяют разнообразные инструментальные методы. Электрокардиограмма сердца, электроэнцефалограмма головного мозга, термография (получение теплофотографий), радиография (введение в организм радиометки), разнообразные эндоскопии (осмотры внутренних органов при помощи специальных приборов – эндоскопов) помогают специалистам не только изучать работу организма, но и на ранних стадиях выявлять заболевания и нарушения в работе органов. Многое о состоянии здоровья человека может сказать его артериальное давление, анализ крови и мочи.

Основными методами психологии являются наблюдения, анкетирование, эксперимент .

Гигиена, наряду с методами, используемыми в других науках, имеет свои специфические методы исследования: эпидемиологический, санитарного обследования, санитарной экспертизы, санитарного просвещения и некоторые другие.

Ваша будущая профессия

1. Оцените роль науки в жизни каждого человека и общества в целом. Напишите эссе по данной теме. Обсудите в классе, существует ли в настоящее время профессиональная деятельность, на которую не влияет развитие науки.

2. Оцените значение информации в современном обществе. Какова роль информации в успешном профессиональном росте? Раскройте смысл высказывания премьер-министра Великобритании Уинстона Черчилля (1874–1965) «Кто владеет информацией – тот владеет миром».

3. Попробуйте смоделировать ситуации, в которых вам могут пригодиться знания, полученные при изучении этой главы.

4. Специальность – комплекс приобретённых путём специальной подготовки и опыта работы знаний, умений и навыков, необходимых для определённого вида деятельности в рамках той или иной профессии. Профессия – социально значимый род занятий человека, вид его деятельности. Определите, что из ниже приведённого списка относится к специальности, а что – к профессии: биология, инженер-эколог, биотехнолог, экология, генный инженер, молекулярный биолог. Аргументируйте свой выбор.

5. Какую специальность вы планируете приобрести в ходе дальнейшего обучения? Определились ли вы уже с выбором профессии?

Из книги Занимательная ботаника [С прозрачными иллюстрациями] автора

Живой якорь

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Тайны мира насекомых автора Гребенников Виктор Степанович

Из книги Путешествие в страну микробов автора Бетина Владимир

Живой мешок Но, как обычно, из всех правил бывают исключения. На моем лабораторном столе произошло нечто противоестественное, не укладывающееся, по моим понятиям, ни в какие биологические рамки. Из желтоватого шелкового кокона, сплетенного гусеницей, которую я нашел в

Из книги Муравей-путешественник автора Мариковский Павел Иустинович

Живой дым Пожалуй, я не припомню ни одной энтомологической экскурсии, во время которой не увидел бы чего-нибудь интересного. А иногда выдаются особенно счастливые дни. В такой день природа будто специально для тебя приподнимает занавес, поверяя свои сокровенные тайны и

Из книги Мир животных. Том 2 [Рассказы о зверях крылатых, бронированных, ластоногих, трубкозубых, зайцеобразных, китообразных и человекообразных] автора Акимушкин Игорь Иванович

Живой свет Еще Аристотель в IV веке до н. э. писал, что «некоторые тела способны светиться во тьме, например грибы, мясо, головы и глаза рыб».Светящиеся бактерии излучают зеленый или голубоватый свет, хорошо заметный в темноте. Свечение это возможно лишь в присутствии

Из книги Мир животных. Том 3 [Рассказы о птицах] автора Акимушкин Игорь Иванович

Муравейник в живой ели Когда-то очень давно - может быть, более полувека назад - на здоровой елке сделали топором большую затеску. Возможно, это был какой-то условный знак жителей гор или обозначение границы между различными владениями. Дерево залечило рану смолой, и

Из книги Занимательная ботаника автора Цингер Александр Васильевич

Живой предок «Мы думаем, однако, что можно согласиться с тем, что загадочные тупайи действительно представляют живую модель того раннего предка, который когда-то сделал первые шаги от насекомоядных к приматам и, значит, принадлежит к ряду наших предков» (доктор Курт

Из книги Дарвинизм в XX веке автора Медников Борис Михайлович

Живой невод Нужно ли представлять пеликана? Его странную фигуру все хорошо знают. Кто не видел, может полюбоваться в зоопарке. Давно поразил пеликан воображение впечатлительных людей. В легендах, в мифологии и религии оставил он свой след. У магометан пеликан – священная

Из книги Энергия жизни [От искры до фотосинтеза] автора Азимов Айзек

Живой якорь Чилим Однажды в студенческие годы зашел я к своему товарищу, впоследствии близкому моему приятелю. Разговор зашел о гимназических воспоминаниях.- Вы в какой гимназии учились? - спросил я Р.- Я - в Астраханской, - отвечал он. - Я чистокровный

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Глава 13. И СНОВА О ЖИВОЙ И НЕЖИВОЙ МАТЕРИИ Все открытия и выводы о сохранении энергии и возрастании энтропии, о свободной энергии и катализе были получены на основе изучения неодушевленного мира. Всю первую половину книги я описывал и объяснял эти механизмы лишь для того,

Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.

Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации . Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.

Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.

Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.

Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.

Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.

Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов . Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций . На этом уровне изучаются генетические и экологические особенности популяций , элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.

Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций , динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.

Выделяют также биосферный уровень организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии.

2. Фундаментальные свойства живой материи

Обмен веществ (метаболизм)

Обмен веществ (метаболизм) - совокупность протекающих в живых системах химических превращений, обеспечивающих их жизнедеятельность, рост, воспроизведение, развитие, самосохранение, постоянный контакт с окружающей средой, способность адаптироваться к ней и ее изменениям. В процессе обмена веществ происходит расщепление и синтез молекул, входящих в состав клеток; образование, разрушение и обновление клеточных структур и межклеточного вещества. В основе метаболизма лежат взаимосвязанные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Ассимиляция - процессы синтеза сложных молекул из простых с расходованием энергии, запасенной в ходе диссимиляции (а также накопление энергии при отложении в запас синтезированных веществ). Диссимиляция - процессы расщепления (анаэробного или аэробного) сложных органических соединений, идущее с высвобождением энергии, необходимой для осуществления жизнедеятельности организма. В отличие от тел неживой природы обмен с окружающей средой для живых организмов является условием их существования. При этом происходит самообновление. Процессы обмена веществ, протекающие внутри организма, объединены в метаболические каскады и циклы химическими реакциями, которые строго упорядочены во времени и пространстве. Согласованное протекание большого количества реакций в малом объеме достигается путем упорядоченного распределения отдельных звеньев обмена веществ в клетке (принцип компартментализации). Процессы обмена веществ регулируются с помощью биокатализаторов - особых белков-ферментов. Каждый фермент обладает субстратной специфичностью катализировать превращение лишь одного субстрата. В основе этой специфичности лежит своеобразное "узнавание" субстрата ферментом. Ферментативный катализ отличается от небиологического чрезвычайно высокой эффективностью, в результате чего скорость соответствующей реакции повышается в 1010 - 1013 раз. Каждая молекула фермента способна осуществлять от нескольких тысяч до нескольких миллионов операций в минуту, не разрушаясь в процессе участия в реакциях. Еще одно характерное отличие ферментов от небиологических катализаторов состоит в том, что ферменты способны ускорять реакции при обычных условиях (атмосферном давлении, температуре тела организма и т.п.). Все живые организмы могут быть разделены на две группы - автотрофы и гетеротрофы, отличающиеся источниками энергии и необходимых веществ для своей жизнедеятельности. Автотрофы - организмы, синтезирующие из неорганических веществ органические соединения с использованием энергии солнечного света (фотосинтетики - зеленые растения, водоросли, некоторые бактерии) или энергии, получаемой при окислении неорганического субстрата (хемосинтетики - серо-, железобактерии и некоторые другие), Автотрофные организмы способны синтезировать все компоненты клетки. Роль фотосинтезирующих автотрофов в природы является определяющей - являясь первичным продуцентом органического вещества в биосфере, они обеспечивают существование всех других организмов и ход биогеохимических циклов в круговороте веществ на Земле. Гетеротрофы (все животные, грибы, большинство бактерий, некоторые бесхлорофилльные растения) - организмы, нуждающиеся для своего существования в готовых органических веществах, которые, поступая в качестве пищи, служат как источником энергии, так и необходимым "строительным материалом". Характерной чертой гетеротрофов является наличие у них амфиболизма, т.е. процесса образования мелких органических молекул (мономеров), образующихся при переваривании пищи (процесс деградации сложных субстратов). Такие молекулы - мономеры используются для сборки собственных сложных органических соединений.

Самовоспроизведение (репродукция)

Способность к размножению (воспроизведению себе подобных, самовоспроизведению) относится к одному из фундаментальных свойств живых организмов. Размножение необходимо для того, чтобы обеспечить непрерывность существования видов, т.к. продолжительность жизни отдельного организма ограничена. Размножение с избытком компенсирует потери, обусловленные естественным отмиранием особей, и таким образом поддерживает сохранение вида в ряду поколений особей. В процессе эволюции живых организмов происходила эволюция способов размножения. Поэтому у ныне существующих многочисленных и разнообразных видов живых организмов мы обнаруживаем разные формы размножения. Многие виды организмов сочетают несколько способов размножения. Необходимо выделить два, принципиально отличающихся типа размножения организмов - бесполое (первичный и более древний тип размножения) и половое. В процессе бесполого размножения новая особь образуется из одной или группы клеток (у многоклеточных) материнского организма. При всех формах бесполого размножения потомки обладают генотипом (совокупность генов) идентичным материнскому. Следовательно, все потомство одного материнского организма оказывается генетически однородным и дочерние особи обладают одинаковым комплексом признаков. При половом размножении новая особь развивается из зиготы, образующейся путем слияния двух специализированных половых клеток (процесс оплодотворения), продуцируемых двумя родительскими организмами. Ядро в зиготе содержит гибридный набор хромосом, образующийся в результате объединения наборов хромосом слившихся ядер гамет. В ядре зиготы, таким образом, создается новая комбинация наследственных задатков (генов), привнесенных в равной мере обоими родителями. А развивающийся из зиготы дочерний организм будет обладать новым сочетанием признаков. Иными словами, при половом размножении происходит осуществление комбинативной формы наследственной изменчивости организмов, обеспечивающий приспособление видов к меняющимся условиям среды и представляющей собой существенный фактор эволюции. В этом заключается значительное преимущество полового размножения по сравнению с бесполым. Способность живых организмов к самовоспроизведению базируется на уникальном свойстве нуклеиновых кислот к репродукции и феномене матричного синтеза, лежащего в основе образования молекул нуклеиновых кислот и белков. Самовоспроизведение на молекулярном уровне обусловливает как осуществление обмена веществ в клетках, так и самовоспроизведение самих клеток. Клеточное деление (самовоспроизведение клеток) лежит в основе индивидуального развития многоклеточных организмов и воспроизведения всех организмов. Размножение организмов обеспечивает самовоспроизведение всех видов, населяющих Землю, что в свою очередь обусловливает существование биогеоценозов и биосферы.

Наследственность и изменчивость

Наследственность обеспечивает материальную преемственность (поток генетической информации) между поколениями организмов. Она тесно связана с репродукцией на молекулярном, субклеточном и клеточном уровнях. Генетическая информация, определяющая разнообразие наследственных признаков, зашифрована в молекулярной структуре ДНК (у некоторых вирусов - в РНК). В генах закодирована информация о структуре синтезируемых белков, ферментных и структурных. Генетический код - это система "записи" информации о последовательности расположения аминокислот в синтезируемых белках с помощью последовательности нуклеотидов в молекуле ДНК. Совокупность всех генов организма называется генотипом, а совокупность признаков - фенотипом. Фенотип зависит как от генотипа, так и факторов внутренней и внешней среды, которые влияют на активность генов и обусловливают регулярные процессы. Хранение и передача наследственной информации осуществляется у всех организмов с помощью нуклеиновых кислот, генетический код един для всех живых существ на Земле, т.е. он универсален. Благодаря наследственности из поколения в поколение передаются признаки, обеспечивающие приспособленность организмов к среде их обитания. Если бы при размножении организмов проявлялась только преемственность существующих признаков и свойств, то на фоне меняющихся условий внешней среды существование организмов было бы невозможно, так как необходимым условием жизни организмов является их приспособленность к условиям среды обитания. Проявляется изменчивость в разнообразии организмов, принадлежащих к одному и тому же виду. Изменчивость может реализовываться у отдельных организмов в ходе их индивидуального развития или в пределах группы организмов в ряду поколений при размножении. Выделяют две основные формы изменчивости, различающиеся по механизмам возникновения, характеру изменения признаков и, наконец, их значимости для существования живых организмов - генотипическую (наследственную) и модификационную (ненаследственную). Генотипическая изменчивость связана с изменением генотипа и приводит к изменению фенотипа. В основе генотипической изменчивости могут лежать мутации (мутационная изменчивость) или новые комбинации генов, возникающие в процессе оплодотворения при половом размножении. При мутационной форме изменения связаны, в первую очередь, с ошибками при репликации нуклеиновых кислот. Таким образом происходит возникновение новых генов, несущих новую генетическую информацию; происходит появление новых признаков. И если вновь возникающие признаки полезны организму в конкретных условиях, то они "подхватываются" и "закрепляются" естественным отбором. Таким образом, на наследственной (генотипической) изменчивости базируется приспособляемость организмов к условиям внешней среды, разнообразие организмов, создаются предпосылки для позитивной эволюции. При ненаследственной (модификационной) изменчивости происходят изменения фенотипа под действием факторов внешней среды и не связанные с изменением генотипа. Модификации (изменения признаков при модификационной изменчивости) происходят в пределах нормы реакции, находящейся под контролем генотипа. Модификации не передаются следующим поколениям. Значение модификационной изменчивости заключается в том, что она обеспечивает приспособляемость организма к факторам внешней среды в течение его жизни.

Индивидуальное развитие организмов

Всем живым организмам свойственен процесс индивидуального развития - онтогенез. Традиционно, под онтогенезом понимают процесс индивидуального развития многоклеточного организма (образующегося в результате полового размножения) от момента формирования зиготы до естественной смерти особи. За счет деления зиготы и последующих поколений клеток формируется многоклеточный организм, состоящий из огромного числа разных типов клеток, различных тканей и органов. Развитие организма базируется на "генетической программе" (заложенной в генах хромосом зиготы) и осуществляется в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в ходе индивидуального существования особи. На ранних этапах индивидуального развития происходит интенсивный рост (увеличение массы и размеров), обусловленный репродукцией молекул, клеток и других структур, и дифференцировка, т.е. появление различий в структуре и усложнение функций. На всех этапах онтогенеза существенное регулирующее влияние оказывают на развитие организма различные факторы внешней среды (температура, гравитация, давление, состав пищи по содержанию химических элементов и витаминов, разнообразные физические и химические агенты). Изучение роли этих факторов в процессе индивидуального развития животных и человека имеет огромное практическое значение, возрастающее по мере усиления антропогенного воздействия на природу. В различных областях биологии, медицины, ветеринарии и других наук широко проводятся исследования по изучению процессов нормального и патологического развития организмов, выяснению закономерностей онтогенеза.

Раздражимость

Неотъемлемым свойством организмов и всех живых систем является раздражимость - способность воспринимать внешние или внутренние раздражители (воздействия) и адекватно на них реагировать. У организмов раздражимость сопровождается комплексом изменений, выражающихся в сдвигах обмена веществ, электрического потенциала на мембранах клеток, физико-химических параметров в цитоплазме клеток, в двигательных реакциях, а высокоорганизованным животным присущи изменения в их поведении.

4. Центральная догма молекулярной биологии - обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку , но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.

Универсальные способы передачи биологической информации

В живых организмах встречаются три вида гетерогенных, то есть состоящих из разных мономеров полимера - ДНК, РНК и белок. Передача информации между ними может осуществляться 3 х 3 = 9 способами. Центральная догма разделяет эти 9 типов передачи информации на три группы:

Общий - встречающиеся у большинства живых организмов;

Специальный - встречающиеся в виде исключения, у вирусов и у мобильных элементов генома или в условиях биологического эксперимента ;

Неизвестные - не обнаружены.

Репликация ДНК (ДНК → ДНК)

ДНК - основной способ передачи информации между поколениями живых организмов, поэтому точное удвоение (репликация) ДНК очень важна. Репликация осуществляется комплексом белков, которые расплетают хроматин , затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию.

Транскрипция (ДНК → РНК)

Транскрипция - биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу информационной РНК . Транскрипцию осуществляют факторы транскрипции и РНК-полимераза . В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом .

Трансляция (РНК → белок)

Зрелая иРНК считывается рибосомами в процессе трансляции. В прокариотических клетках процесс транскрипции и трансляции не разделён пространственно, и эти процессы сопряжены. В эукариотических клетках место транскрипции клеточное ядро отделено от места трансляции (цитоплазмы ) ядерной мембраной , поэтому иРНК транспортируется из ядра в цитоплазму. иРНК считывается рибосомой в виде трёхнуклеотидных «слов». Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома.

5. Обратная транскрипция - это процесс образования двуцепочечной ДНК на матрице одноцепочечной РНК . Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.

Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии , которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки. Встречается у ретровирусов , например, ВИЧ и в случае ретротранспозонов .

Трансдукция (от лат. transductio - перемещение) - процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом . Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов . К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.

Векторная молекула ДНК - это молекула ДНК, которая выступает в роли носителя. Молекулу-носитель должен отличать ряд особенностей:

Способность к автономной репликации в клетке хозяина (чаще бактериальной или дрожжевой)

Наличие селективного маркера

Наличие удобных сайтов рестрикции

В роли векторов чаще всего выступают бактериальные плазмиды.