Траектория движения небесных тел. Центральное поле тяготения Упрощенная постановка задачи трех тел

Кеплерово движение космического аппарата в точности никогда не может осуществляться. Притягивающее небесное тело не может обладать точной сферической симметрией, и, следовательно, его поле тяготения не является, строго говоря, центральным. Необходимо учитывать притяжение других небесных тел и влияние иных факторов. Но кеплерово движение настолько просто и так хорошо изучено, что бывает удобно даже при отыскании точных траекторий не отказываться полностью от рассмотрения кеплеровой орбиты, а по возможности уточнить ее. Кеплерова орбита рассматривается как некая опорная орбита, но учитываются возмущения, т. е. искажения, которые орбита претерпевает от притяжения того или иного тела, светового давления, сплюснутости Земли у полюсов и т. д. Такое уточненное движение называют возмущенным движением, а соответствующее кеплерово движение - невозмущенным.

Возмущения орбиты могут вызываться не только природными силами. Их источником может быть также двигатель малой тяги (например, электроракетный или солнечно-парусный), помещенный на борту космического аппарата или спутника Земли.

Остановимся несколько подробнее на том, как вычисляются гравитационные возмущения со стороны небесных тел. Рассмотрим, например, возмущение Солнцем геоцентрического движения космического аппарата. Его учет совершенно аналогичен учету градиента земной гравитации при рассмотрении движений относительно спутника Земли (§ 3 настоящей главы).

Пусть космический аппарат находится на линии Земля - Солнце на расстоянии от Земли и 149 100 000 км от Солнца (среднее расстояние Земли от Солнца составляет По формуле (2) в § 2 гл. 2 и значениям величины приведенным в § 4 гл. 2, мы можем вычислить гравитационные ускорения космического аппарата от Земли и от Солнца. Первое из них равно второе - Ускорение от Солнца оказалось больше, чем ускорение от Земли. Это, однако, не значит, что аппарат уйдет от Земли и будет захвачен Солнцем. В самом деле, ведь нас интересует геоцентрическое движение аппарата, а вмешательство Солнца в это движение выражается возмущением, которое может быть вычислено как разность между тем ускорением, которое Солнце сообщает аппарату, и тем, которое оно сообщает Земле. Первое мы уже вычислили, а второе равно

Значит, возмущающее ускорение равно всего лишь или 2,5% ускорения, сообщаемого Землей. Как видим, вмешательство Солнца в «земные дела», в геоцентрическое движение совсем невелико (рис. 19).

Допустим теперь, что нас интересует движение аппарата относительно Солнца - гелиоцентрическое движение. Теперь главным, «центральным» гравитационным ускорением является ускорение от Солнца а возмущающим - разность между ускорением, сообщаемым Землей аппарату, и ускорением, сообщаемым Землей Солнцу.

Рис. 19. Расчет возмущений от Земли и от Солнца.

Первое равно а второе составляет ничтожную величину Земля почти не действует на Солнце, и гелиоцентрическое движение аппарата можно попросту считать абсолютным, а не относительным (этого и следовало ожидать ввиду колоссальности массы Солнца). Итак, возмущающее ускорение равно все той же величине т. е. составляет 26,7% главного, «центрального» ускорения - от Солнца. Вмешательство Земли в «солнечные дела» оказалось довольно существенным!

Теперь ясно, что гораздо больше оснований рассматривать движение космического аппарата, находящегося в выбранной нами точке пространства, как кеплерово движение относительно Земли, чем как кеплерово движение относительно Солнца. В первом случае мы не учтем возмущение, составляющее 2,5%, а во втором - 26,7% от «центрального» ускорения.

Если мы теперь расположим космический аппарат в точке на линии Земля - Солнце на расстояниях от Земли и от Солнца, то обнаружим обратную картину (предоставляем читателю самому проделать необходимые расчеты). В этом случае возмущение Солнцем геоцентрического движения составляет 68,3% ускорения, сообщаемого Землей, а возмущение Землей гелиоцентрического движения не составляет и 3%

ускорения, сообщаемого Солнцем. Очевидно, разумнее считать теперь аппарат находящимся во власти Солнца и рассматривать его движение как кеплерово с фокусом в центре Солнца.

Аналогичные рассуждения и расчеты могут быть проделаны для всех точек пространсгва (при этом для точек, не лежащих на прямой Земля - Солнце, придется брать векторную разность ускорений). Каждая точка при этом будет отнесена или к некоторой области, окружающей Землю, где выгоднее рассматривать геоцентрическое движение, или ко всему остальному пространству, где кеплеровы траектории будут гораздо более точны, если за центр притяжения принять Солнце.

Математический анализ показывает, что граница указанной области очень близка к сфере (несколько приплюснутой со стороны Солнца и «припухлой» с противоположной стороны). Принято для простоты расчетов считать эту область в точности сферой и называть сферой действия Земли.

Радиус сферы действия планеты может быть вычислен по формуле, пригодной для любых двух тел и определяющей радиус сферы действия тела с малой массой (например, планеты) относительно тела с большой мамой (например, Солнца):

где а - расстояние между телами 11.38, 1.391.

Радиус сферы действия Земли относительно Солнца равен сферы действия Луны относительно Земли Солнца относительно Галактики (вся масса которой предполагается сосредоточенной в ее ядре) , т. е. около 1 светового года год

При переходе космического аппарата через границу сферы действия приходится переходить от одного центрального поля тяготения к другому. В каждом поле тяготения движение рассматривается, естественно, как кеплерово, т. е. как происходящее по какому-либо из конических сечений - эллипсу, параболе или гиперболе, причем на границе сферы действия траектории по определенным правилам сопрягаются, «склеиваются» (как это делается, мы увидим в третьей и четвертой частях книги). В этом заключается приближенный метод расчета космических траекторий, который иногда называют методом сопряженных конических сечений.

Единственный смысл понятия сферы действия заключается именно в границе разделения двух кеплеровых траекторий. В частности, сфера действия планеты вовсе не совпадает с той областью

пространства, в которой планета способна вечно удерживать свой спутник . Эта область называется сферой Хилла для планеты относительно Солнца.

Внутри сферы Хилла тело может находиться неограниченно долго несмотря на возмущения со стороны Солнца, если только в начальный момент оно имело эллиптическую планетоцентрическую орбиту. Эта сфера больше сферы действия.

Сфера Хилла для Земли относительно Солнца имеет радиус 1,5 млн. км.

Радиус сферы Хилла для Солнца относительно Галактики составляет 230 000 а. е. Таков этот радиус, если обращение по орбите вокруг Солнца происходит в ту же сторону, что и движение Солнца вокруг центра Галактики (движение естественных планет Солнечной системы именно таково). В противном случае он равен 100 000 а. е.

В отличие от сферы действия и от сферы Хилла, сфера притяжения планеты относительно Солнца, определяемая как область, на границе которой попросту равны гравитационные ускорения от планеты и от Солнца, не играет никакой роли в космодинамике.

Луна находится глубоко внутри сферы действия Земли. Поэтому мы предпочитаем рассматривать геоцентрическое движение Луны и считать ее спутником Земли. Мы отказываемся считать Луну самостоятельной планетой ввиду слишком больших гравитационных возмущений ее гелиоцентрического движения со стороны Земли. Любопытно, что орбита Луны лежит вне сферы притяжения Земли (имеющей радиус примерно Луна сильнее притягивается Солнцем, чем Землей.

При использовании приближенного метода расчета космических траекторий основные погрешности накапливаются при расчете движения в районе границы сферы действия. Поэтому некоторые авторы считают, что для большинства случаев расчета более высокие точности дают области разграничения между центральными полями тяготения, определяемые иначе, чем это сделано выше. Предлагалось, например, считать соответствующую область вокруг Земли имеющей радиус 3-4 млн. км . На основании энергетических соображений для подобной сферы влияния выводился радиус, равный

Сфера действия и сфера влияния могут быть названы динамическими гравитационными сферами, а сфера притяжения - статической гравитационной сферой. Использование последней в космодинамике имело бы смысл только в том случае, если бы можно

было представить себе космический полет между двумя неподвижными небесными телами.

Заметим в заключение, что метод сопряженных конических сечений, связанный с теми или иными динамическими гравитационными сферами, не является единственным приближенным методом расчета космических траекторий. Продолжаются поиски других приближенных методов, более точных, чем описанный, и в то же время требующих меньшего числа вычислений, чем метод численного интегрирования. Увы, приходится экономить время работы даже самых быстродействующих электронных вычислительных машин!

Громоздкой процедуры подбора нужной косми­ческой траектории можно избежать, если задаться целью примерно наметить путь космического аппарата. Оказывается, что для срав­нительно точных расчетов нет нужды учитывать действующие на КА силы притяжения всех небесных тел или даже сколько-нибудь значительного их числа.

Когда космический аппарат находится в мировом пространстве вдали от планет , достаточно учитывать притяжение одного лишь Солнца, потому что гравитационные ускорения, сообщаемые планетами (вследствие больших расстояний и относительной мало­сти их масс), ничтожно малы по сравнению с ускорением, сообщае­мым Солнцем.

Допустим теперь, что мы изучаем движение КА вблизи Земли . Ускорение, сообщаемое этому объекту Солнцем, довольно заметно: оно примерно равно ускорению, сооб­щаемому Солнцем Земле (около 0,6 см/с 2); естественно было бы его учитывать, если нас интересует движение объекта относительно Солнца (учитывается же ускорение Земли в ее годовом движении вокруг Солнца!). Но если нас интересует движение КА относительно Земли , то притяжение Солнца оказывается сравнительно малосущественным. Оно не будет вмеши­ваться в это движение аналогично тому, как притяжение Земли не вмешивается в относительное движение предметов на борту корабля-спутника. То же касается и притяжения Луны, не говоря уже о при­тяжениях планет.

Вот почему в космонавтике оказывается весьма удобным при примерных расчетах («в первом приближении») почти всегда рас­сматривать движение КА под действием одного притягивающего небесного тела, т. е. исследовать движение в рам­ках ограниченной задачи двух тел. При этом удается получить важ­ные закономерности, которые совершенно ускользнули бы от нашего внимания, если бы мы решились изучать движение космического аппарата под влиянием всех действующих на него сил.

Будем считать небесное тело однородным материальным шаром или по крайней мере шаром, состоящим из вложенных друг в друга однородных сферических слоев (так примерно обстоит дело для Земли и планет). Математически доказывается, что такое небесное тело притягивает так, будто бы вся его масса сосредоточена в его центре (Это неявно предполагалось, когда мы говорили о задаче п тел. Под расстоя­нием до небесного тела подразумевалось и будет дальше подразумеваться расстоя­ние до его центра). Такое поле тяготения называется центральным или сфе­ рическим .

Будем изучать движение в центральном поле тяготения КА, получившего в начальный момент, когда он нахо­дился на расстоянии r 0 от небесного тела (В дальнейшем для краткости мы будем вместо «небесное тело» говорить «Земля»), скорость v 0 (r 0 и v 0 – начальные условия ). Для дальнейшего воспользуемся законом сохра­нения механической энергии, который справедлив для рассматри­ваемого случая, так как поле тяготения является потенциальным; наличием же негравитационных сил мы пренебрегаем. Кинетическая энергия космического аппарата равна mv 2 /2, где т – масса аппара­та, a v – его скорость. Потенциальная энергия в центральном поле тяготения выражается формулой

где М – масса притягивающего небесного тела, a r – расстояние от него КА; потенциальная энергия, будучи отрицательной, увеличивается с удалением от Земли, обращаясь в нуль на бесконечности. Тогда закон сохранения полной механи­ческой энергии запишется в следующем виде:

Здесь в левой части равенства стоит сумма кинетической и потенци­альной энергий в начальный момент, а в правой – в любой другой момент времени. Сократив на т и преобразовав, мы напишем инте­грал энергии – важную формулу, выражающую скорость v космического аппарата на любом расстоянии r от центра притяжения:

где K=fM – величина, характеризующая поле тяготения конкрет­ного небесного тела (гравитационный параметр). Для Земли К= 3,986005·10 5 км 3 /с 2 , для Солнца К =1,32712438·10 11 км 3 /с 2 .

Сферические действия планет. Пусть имеются два небесных тела, одно из которых большой массы М , например Солнце, и движущееся вокруг него другое тело значительно меньшей массы m , например Земля или какая-либо другая планета (рис. 2.3).

Положим также, что в поле тяготения этих двух тел находится третье тело, например КА, масса которого μ так мала, что практически совершенно не влияет на движение тел массой М и m . В этом случае можно или рассматривать движение тела μ в поле тяготения планеты и по отношению к планете, считая, что притяжение Солнца оказывает возмущающее влияние на движение этого тела, или наоборот, рассматри­вать движение тела μ в поле тяготения Солнца по отношению к Солнцу, считая, что притяжение планеты оказывает возмущающее влияние на движение этого тела. Для того чтобы выбрать тело, по отношению к которому следует рассматривать движение тела μ в суммарном поле тяготения тел М и m , пользуются введенным Лапласом понятием сферы действия. Область, называемая так, в действительности не является точной сферой, но очень близка к сферической.

Сферой действия планеты по отношению к Солнцу называется такая область вокруг планеты, в которой отношение возмущающей силы со стороны Солнца к силе притяжения тела μ планетой меньше, чем отношение возмущающей силы со стороны планеты к силе притяжения тела μ Солнцем.

Пусть М – масса Солнца, m – масса планеты, а μ – масса КА; R и r –расстояния КА соответственно от Солнца и планеты, причем R значительно больше r .

Сила притяжения массы μ Солнцем

При перемещении тела μ возникнут возмущающие силы

На границе сферы действия, согласно данному выше определению, должно выполняться равенство

где r o – радиус сферы действия планеты.

Так как r значительно меньше R по условию, то за R обычно принимается расстояние между рассматриваемыми небесными телами. Формула для r o – является приближенной. Зная массы Солнца и планет и расстояния между ними, можно определить радиусы сфер действия планет по отношению к Солнцу (табл. 2.1, где приведен также радиус сферы действия Луны по отношению к Земле).

Таблица 2.1

Сферы действия планет

Планета Масса m относитель­но массы Земли Расстояние R , в млн км r o – радиус сферы действия, км
Меркурий 0,053 57,91 111 780
Венера 0,815 108,21 616 960
Земля 1,000 149,6 924 820
Марс 0,107 227,9 577 630
Юпитер 318,00 778,3 48 141 000
Сатурн 95,22 1428,0 54 744 000
Уран 14,55 2872,0 51 755 000
Нептун 17,23 4498,0 86 925 000
Луна 0,012 0,384 66 282

Таким образом, понятие сферы действия существенно упрощает расчет траекторий движения КА, сводя задачу движения трех тел к нескольким задачам движения двух тел. Такой подход достаточно строг, как показывают сравнительные расчеты, выполненные методами численно­го интегрирования.

Переходы между орбитами. Движение КА происходит под действием гравитационных сил притяжения. Можно поставить задачи о нахождении оптимальных (с точки зрения минимального требуемого количества топлива или минимального времени на полет) траекторий движения, хотя в общем случае могут быть рассмотрены и другие критерии.

Орбитой называется траектория движения центра масс КА на основном участке полета под действием гравитационных сил. Траекто­рии могут быть эллиптическими, круговыми, гиперболическими или параболическими.

Путем изменения скорости может осуществляться переход КА с одной орбиты на другую, а при выполнении межпланетных полетов КА должен выйти из сферы действия планеты отправления, пройти участок в поле тяготения Солнца и войти в сферу действия планеты назначения (рис. 2.4).

Рис. 2.4. Орбита КА при полете с планеты на планету:

1 – сфера действия планеты отправления; 2 – сфера действия Солнца, эллипс Романа; 3 – сфера действия планеты назначения

КА на первом участке тра­ектории выводится к границе сферы действия планеты от­правления с заданными пара­метрами либо прямо, либо с выходом на промежуточную орбиту спутника (круговая или эллиптическая промежуточная орбита может быть протяжен­ностью менее одного витка или несколько витков). Если ско­рость КА на границе сферы действия больше или равна местной параболической ско­рости, тогда дальнейшее дви­жение будет либо по гипербо­лической или параболической траектории (следует заметить, что выход из сферы действия планеты отправления может быть выполнен по эллиптической орбите, апогей которой лежит на границе сферы действия планеты).

В случае непосредственного выхода на траекторию межпланетного полета (и большой орбитальной скорости) общая продолжительность полета сокращается.

Гелиоцентрическая скорость на границе сферы действия планеты отправления равна векторной сумме выходной скорости относительно планеты отправления и скорости движения самой планеты по орбите вокруг Солнца. В зависимости от выходной гелиоцентрической скорости на границе сферы действия планеты отправления движение будет проходить по эллиптической, параболической или гиперболической траектории.

Орбита КА будет близка к орбите отправления, если гелиоцентричес­кая скорость выхода КА из сферы действия планеты будет равна ее орбитальной скорости. Если выходная скорость КА больше скорости планеты, но одинакова по направлению, то орбита КА будет распола­гаться вне орбиты планеты отправления. При меньшей и противополож­ной по направлению скорости – внутри орбиты планеты отправления. Меняя геоцентрическую скорость выхода, можно получить эллиптичес­кие гелиоцентрические орбиты, касательные к орбитам внешних или внутренних планет относительно орбиты планеты отправления. Именно такие орбиты могут служить траекториями полета с Земли к Марсу, Венере, Меркурию и Солнцу.

На конечном этапе межпланетного перелета КА входит в сферу действия планеты прибытия, выходит на орбиту ее спутника и произво­дит посадку в заданном районе.

Относительная скорость, с которой КА войдет в движущуюся ему наперерез или нагоняющую его сзади сферу действия, всегда будет больше местной (на границе сферы действия) параболической скорости в поле тяготения планеты. Поэтому траектории внутри сферы действия планеты назначения всегда будут гиперболами и КА должен неизбежно покинуть ее, если только он не войдет в плотные слои атмосферы планеты или не уменьшит скорость до круговой или эллиптической орбит.

Использование гравитационных сип при полетах в космическом пространстве. Силы гравитации являются функциями координат и обладают свойством консервативности: работа, совершаемая силами поля, не зависит от пути, а зависит только от положения начальной и конечной точек пути. Если начальная и конечная точки совпадают, т.е. путь есть замкнутая кривая, то прираще­ния живой силы не происходит. Однако, встречаются случаи, когда это утверждение неверно: например (рис. 2.5), если в точку К (в электрическом поле вокруг изогнутого проводника, по кото­рому течет ток и в котором сило­вые линии замкнуты) помещена заряженная частица, то под дей­ствием сил поля она будет дви­гаться по силовой линии и, вер­нувшись опять в К , будет иметь

некоторую живую силу mv 2 /2 .

Если точка опять опишет за­мкнутую траекторию, то полу­чит дополнительное приращение живой силы и т.д. Таким образом, можно получить сколь угодно большое увеличение ее кинетической энергии. В этом примере показано, как осуществляется превращение энергии электрического поля в энергию движения точки. Ф. Дж. Дайсон описал возможный принцип устройства «гравитационной машины», использующей для получения работы поля тяжести (Н.Е. Жуковский. Кине­матики, статика, динамика точки. Оборонгиз, 1939; Ф. Дж. Дайсон. Межзвездная связь. «Мир», 1965): в Галактике может быть найдена двой­ная звезда с компонентами А и В, которые вращаются около общего центра масс по некоторой орбите (рис. 2.6). Если масса каждой звезды М , то орбита будет круговой с радиу­сом R . Скорость каждой звезды не­трудно найти из равенства силы притяжения центробежной силе:

По направлению к этой системе движется тело С небольшой массы по траектории CD. Траектория рассчитана так, что тело С подходит близко к звезде В в тот момент, когда эта звезда движется навстречу телу С. Тогда тело С совершит оборот вокруг звезды и далее будет двигаться с увеличенной скоростью. От этого маневра получится почти такой же эффект, как от упругого столкновения тела С со звездой В: скорость тела С будет приблизительно равна 2v . Источником энергии при таком маневре является гравитационный потенциал тел А и В. Если тело С – космический аппарат, то он таким образом получает для дальнейшего полета энергию от поля тяжести за счет взаимного притяжения двух звезд. Таким образом, возможен разгон КА до скорости в тысячи километров в секунду.

Определение 1

Орбита небесного тела − это траектория, по которой движется в космическом пространстве космические тела: Солнце, звезды, планеты, кометы, космические корабли, спутники, межпланетные станции и др.

Применительно к искусственным космическим аппаратам понятие “орбита” используется для тех участков траекторий, на которых они перемещаются с отключенной двигательной установкой.

Форма орбиты небесных тел. Космическая скорость

Форма орбит и скорость, с которой по ним передвигаются небесные тела, зависят, в первую очередь, от силы всемирного тяготения. При анализе передвижения небесных тел Солнечной системы во многих случаях пренебрегают их формой и строением, то есть они выступают в качестве материальных точек. Это допустимо из-за того, что расстояние между телами, как правило, во множество раз превышает своих размеров. Если принять небесное тело за материальную точку, то при анализе его перемещения применяется закон всемирного тяготения. Также зачастую рассматривают лишь 2 притягивающихся тела, опуская влияние других.

Пример 1

При исследовании траектории движения Земли вокруг Солнца можно с вероятной точностью предположить, что планета передвигается лишь под действием сил солнечного тяготения. Равно также при исследовании движения искусственного спутника планеты принимается во внимание только тяготение «своей» планеты, при этом опускается не только притяжение других планет, но и солнечное.

Замечание 1

Предыдущие упрощения позволили прийти к задаче 2 -х тел. Одно из решений данной задачи предложил И. Кеплер. А полное решение сформулировал И. Ньютон, доказавший, что одно из притягивающихся небесных тел обращается вокруг другого по орбите в форме эллипса (или окружности, частного случая эллипса), параболы либо гиперболы. В фокусе данной кривой лежит 2 -я точка.

На форму орбиты влияют следующие параметры:

  • масса рассматриваемого тела;
  • расстояние между ними;
  • скорость, с которой одно тело движется по отношению к другому.

Если тело массой m 1 (к г) расположено на расстоянии r (м) от тела массой m 0 (к г) и передвигается в данный момент времени со скоростью υ (м / с) , тогда орбита задается постоянной:

Определение 2

Постоянная тяготения f = 6 , 673 · 10 - 11 м 3 к г - 1 с - 2 . Если h 0 − по гиперболической орбите.

Определение 3

Вторая космическая скорость − это наименьшая начальная скорость, которую необходимо сообщить телу, чтобы оно начало движение около поверхности Земли, преодолело земное притяжение и навсегда покинуло планету по параболической орбите. Она равняется 11 , 2 к м / с.

Определение 4

Первой космической скоростью называют наименьшую начальную скорость, которую необходимо сообщить телу, чтобы оно стало искусственным спутником планеты Земля. Она равняется 7 , 91 к м / с.

Большинство тел Солнечной системы перемещается по эллиптическим траекториям движения. Только лишь некоторые маленькие тела Солнечной системы такие, как кометы, вероятно перемещаются по параболическим или гиперболическим траекториям. Таким образом, межпланетные станции отправляются по гиперболической орбите по отношению к Земле; потом они перемещаются по эллиптическим траекториям по отношению к Солнцу в направлении к точке назначения.

Определение 5

Элементы орбиты − величины, с помощью которых определяются размеры, форма, положение, ориентация орбиты в пространстве и расположение небесного тела на ней.

У некоторых характерных точек орбит небесных тел есть собственные наименования.

Определение 6

Ближайшая к Солнцу точка орбиты небесного тела, передвигающегося вокруг Солнца, называется Перигелий (рисунок 1).

А самая удаленная − Афелий .

Ближайшая точка орбиты к планете Земля − Перигей , а самая дальняя − Апогей .

В более обобщенных задачах, в которых под притягивающим центром подразумевают различные небесные тела, употребляется название ближайшей к центру Земли точки орбиты − перицентр и самой отдаленной от центра точки орбиты − апоцентр .

Рисунок 1 . Точки орбиты небесных тел по отношению к Солнцу и Земле

Случай с 2 -мя небесными телами является самым простым и практически не встречается (хотя есть множество случаев, когда притяжением 3 -го, 4 -го и т.д. тел пренебрегают). На самом деле картина гораздо сложнее: каждое небесное тело находится под влиянием многих сил. При передвижении планеты притягиваются не только к Солнцу, но и друг к другу. В звездных скоплениях звезды притягиваются между собой.

Определение 7

Движение искусственных спутников находится под влиянием таких сил, как несферичность фигуры Земли и сопротивление земной атмосферы, а также притяжение Солнца и Луны. Данные дополнительные силы называются возмущающими . А эффекты, которые они создают при движении небесных тел, именуются возмущениями . Вследствие действия возмущений орбиты небесных тел постоянно медленно меняются.

Определение 8

Небесная механика − раздел в астрономии, который занимается изучением движения небесных тел с учетом возмущений.

С помощью методов небесной механики можно с высокой точностью и на много лет наперед определить расположение небесных тел в Солнечной системе. Более сложные вычислительные методы применяются при изучении траектории движения искусственных небесных тел. Точное решение подобных задач в виде математических формул получить очень трудно. Поэтому для решения сложных уравнений используют быстродействующие электронно-вычислительные машины. Для этого необходимо знание понятия сферы действия планеты.

Определение 9

Сфера действия планеты − это область околопланетного (окололунного) пространства, в которой при расчете возмущений в движении тела (спутника, кометы или межпланетного космического корабля) в качестве центрального тела принимается не Солнце, а эта планета (Луна).

Вычисления упрощаются из-за того, что внутри сферы действия возмущения от влияния солнечного притяжения по сравнению с планетным притяжением меньше, чем возмущение от планеты по сравнению с солнечным притяжением. Однако, не нужно забывать, что внутри сферы действия планеты и за ее пределами на тело оказывают влияние силы солнечного притяжения, а также планет и других небесных тел в той или иной степени.

Радиус сферы действия вычисляется исходя из расстояния между Солнцем и планетой. Орбиты небесных тел внутри сферы рассчитываются на основании задачи 2 -х тел. Если тело покидает планету, тогда его движение внутри сферы действия осуществляется по гиперболической орбите. Радиус сферы действия планеты Земля равняется примерно 1 м л н. к м. ; сфера действия Луны по отношению к Земле имеет радиус примерно 63 т ы с я ч и к м.

Способ определения орбиты небесного тела с помощью сферы действия является одним из методов приближенного определения орбит. Если известны приближенные величины элементов орбиты, тогда можно при помощи других методов получить более высокоточные значения элементов орбиты. Поэтапное улучшение определяемой орбиты − типичный прием, который позволяет вычислить параметры орбиты с большой точностью. Круг современных задач по определению орбит существенно увеличился, что объясняется стремительным развитием ракетной и космической техники.

Пример 2

Необходимо определить, во сколько раз масса Солнца превышает массу Земли, если известен период обращения Луны вокруг Земли 27 , 2 с у т. , а среднее расстояние ее от Земли 384 000 к м.

Дано: T = 27 , 2 с у т. , a = 3 , 84 · 10 5 к м.

Найти: m с m з - ?

Решение

Приведенные выше упрощения сводят нас к задаче 2 -х тел. Одно из решений данной задачи предложил И. Кеплер, а полное решение сформулировал И. Ньютон. Воспользуемся данными решениями.

T з = 365 с у т − период обращения Земли вокруг Солнца.

a з = 1 , 5 · 10 8 к м − среднее расстояние от Земли до Солнца.

При решении будем руководствоваться формулой закона И. Кеплера с учетом 2 -го закона И. Ньютона:

m с + m з m з + m · T 3 2 T 2 = a 3 3 a 3 .

Зная, что масса Земли по сравнению с массой Солнца и масса Луны по сравнению с массой Земли очень малы, запишем формулу в виде:

m с m з · T 3 2 T 2 = a 3 3 a 3 .

Из этого выражения находим искомое соотношение масс:

m с m з = a 3 3 a 3 · T 3 2 T 2 .

Ответ: m с m з = 0 , 3 · 10 6 к г.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Внутри сферы действия, то есть в области T , задаваемой соотношением с заменой знака равенства на знак "меньше", выгоднее пользоваться уравнениями , вне - уравнениями . Оценки , показывают, что Луна находится глубоко внутри сферы действия Земли.

Таким образом, с точки зрения сферы действия Луна - спутник, а не планета.

Исследуем форму сферы действия. Запишем ее уравнение в той же системе координат, в которой получено . После преобразований

(10)

Поскольку уравнение содержит y , z только в комбинации y 2 + x 2 , то S есть поверхность вращения вокруг оси x . Поэтому форма S определяется формой кривой S " - сечением S плоскостью xy .

Преобразуя средствами компьютерной алгебры, студент астрономического отделения Ленинградского университета С.Р. Тюрин нашел, что S " совпадает или является частью алгебраической кривой 48-й степени от x , y . Можно показать, что S " представляет собой близкий к кругу, симметричный относительно обеих осей овал, сжатый по оси x (оси затмений). Расстояние изменяется от 792 10 3 до 940 10 3 км, что в два раза превышает наибольший радиус лунной орбиты.

Сфера хилла

Для простоты будем пренебрегать массой Луны и эксцентриситетом земной орбиты. Как показал В.Г. Голубев , без этих предположений можно обойтись, но мы не будем усложнять задачу.

Уточним направление оси y . Проведем ее в плоскости круговой орбиты Q в сторону движения. Начало Q системы xyz описывает окружность радиуса [m 1 / (m 1 + m )]R вокруг центра масс Q 1 и Q , а сама система равномерно вращается вокруг оси z с угловой скоростью , определяемой по третьему закону Кеплера . Движение P в системе xyz вызывается силами притяжения к Q 1 и Q , а также центробежной и кориолисовой силой инерции. Как известно, кориолисова сила не производит работы, а остальные три силы консервативны. Поэтому сохраняется сумма кинетической и потенциальной энергии P , складывающейся из энергии сил притяжения и центробежной. После сокращения на массу P можно записать

Кривизна траектории

Геоцентрическая орбита Луны - пространственная кривая. Но ее "пространственность" невелика. Векторы скорости и ускорения образуют с плоскостью эклиптики углы не более 6°. То же верно и для гелиоцентрической траектории. Поэтому в обоих случаях достаточно ограничиться проекцией орбиты на плоскость эклиптики . Как хорошо известно, орбита Луны относительно Земли близка к кеплеровскому эллипсу. Кстати, мы проиллюстрировали это, оценив Z / W в предыдущем разделе. Проекция лежащего в плоскости эллипса на ортогональную плоскость - отрезок, проекция на любую другую плоскость тоже эллипс. Поэтому проекция L геоцентрической орбиты Луны на плоскость эклиптики близка к эллипсу. Отклонения от него может заметить на глаз лишь художник или чертежник. Только одно отличие заметно просто человеку с нормальным зрением: орбита не замыкается после оборота вокруг Земли. Каждый следующий виток чуть-чуть смещен по отношению к предыдущему. Но это несущественно. Для нашей цели важны два обстоятельства:

  • вектор скорости на L вращается влево, если смотреть с северного полюса эклиптики; кривизна всегда положительна, точки перегиба не встречаются;
  • на одном витке L вокруг Земли отсутствуют петли.

Оба свойства вместе означают, что L всегда обращена вогнутостью к Земле, не имея ни волн (кривизна всегда положительна), ни петель на одном витке (кривизна не слишком велика), и похожа на овал с заключенной внутри Землей (рис. 2). Интересно, что оба указанных свойства (с заменой слова "Земля" на слово "Солнце") справедливы и для проекции гелиоцентрической орбиты Луны. Таким образом, с точки зрения кривизны траектории Луна с равным правом может считаться и спутником и планетой.

Заключение

Мы построили математическую модель движения Луны, адекватную задаче. Это построение демонстрирует общее правило, упомянутое, например, в . Во-первых, мы из общих соображений отобрали факты, которые в принципе могут играть хоть какую-то роль в изучаемом явлении, и отбросили практически бесконечную совокупность остальных. Во-вторых, мы оценили сравнительное действие отобранных и также отбросили их все, за исключением двух основных. Последние необходимо учитывать обязательно, иначе модель потеряет связь с действительностью.

Мы рассмотрели нашу модель с разных сторон, введя несколько понятий, полезных и во многих других отношениях. И выяснили следующее. В большинстве случаев Луну следует считать спутником Земли, как это и делают подавляющее большинство ее грамотных жителей. Но бывают ситуации, когда Луна ведет себя как планета, например она вместе с Венерой находится вне сферы тяготения Земли. Наконец, встречаются ситуации, когда Луна ведет себя одновременно и как спутник и как планета, например формы ее геоцентрической и гелиоцентрической траекторий схожи. Все это служит превосходной иллюстрацией того, что не только в квантовой механике, казалось бы, взаимоисключающие утверждения оба оказываются верными.

Заметим, что наши рассуждения применимы и к другим спутникам планет. Например, практически все искусственные спутники Земли находятся глубоко внутри сферы ее тяготения. Так что ИСЗ - настоящие спутники с точки зрения любых гравитационных сфер. И с точки зрения формы траектории тоже: их гелиоцентрические орбиты волнисты. Спутники других планет любознательный читатель может исследовать сам.

Литература

Астрономический ежегодник на 1997 г. / Ред. В.К. Абалакин. СПб.: ИТА РАН, 1996.
Сурдин В.Г. Приливные явления во Вселенной // Новое в жизни, науке, технике. Сер. Космонавтика, астрономия. М.: Знание, 1986. No 2.
Антонов В.А., Тимошкова Е.И., Холшевников К.В. Введение в теорию ньютоновского потенциала. М.: Наука, 1988.
Тюрин С.Р. Исследование точного уравнения сферы действия // Тез. докл. на студ. науч. конф. "Физика Галактики", 1989 г. Свердловск, Изд-во УрГУ, 1989. С. 23.
Голубев В.Г., Гребеников Е.А. Проблема трех тел в небесной механике. М.: Изд-во МГУ, 1985.
Неймарк Ю.И. Простые математические модели и их роль в постижении мира// Соросовский Образовательный Журнал. 1997. No 3. С. 139-143.

Математические определения

В KSP много понятий связано с физикой и небесной механикой, что может оказаться непривычным для непосвящённых. Кроме того разнообразные научные термины и аббревиатуры используются для описания общих понятий.
Данная статья составлена как краткий справочник по всей необходимой терминологии и призвана помочь Вам побыстрее стать настоящим кербонавтом!


Декартова система координат - использует прямоугольные координаты (a,b,c)

Полярная система координат - использует расстояние и углы (r,Θ,Φ)

Эллиптический

  • Овальной формы, часто в значении формы орбиты.

Нормаль, вектор нормали

  • Вектор, перпендикулярный к плоскости.
  • Величина, задающаяся одним числом, не имеет направления. Следующая за скаляром единица измерения указывает на его размерность, напр., 3 кг, 40 м, 15 с скалярные величины, обозначающие массу, расстояние и время соответственно. Скаляром является среднепутевая скорость.
  • Характеризуется одновременно направлением и величиной. Форма записи зависит от используемой системы координат и числа измерений. <35°, 12> двумерный полярный вектор, а <14, 9, -20> трёхмерный декартовый вектор. Существуют и другие системы координат, но эти наиболее часто встречаются.
  • <35°, 12> выглядит как стрела длиной 12 единиц, проведённая из начала координат (из нуля, где координата-угол значения не имеет, поскольку у этой точки длина отсутствует) в точку в 35° от координатной оси (обычно оси-Х, от которой положительные углы отсчитываются против часовой стрелки)
  • <14, 9, -20> выглядит как стрела, проведённая из начала координат (<0,0,0>), в точку с координатой x = 14, координатой y = 9 и координатой z = -20.
  • Преимущество использования декартовых координат в том, что сразу понятно расположение конечной точки, но труднее оценить длину, тогда как в полярных координатах длина задана явно, но зато сложнее представить положение.
  • Следующие физические величины являются векторами: скорость (мгновенная), ускорение, сила

Для трёхмерной системы координат нужны:

  • Точка/тело отсчёта.
  • 3 базисных вектора. Они задают единицы измерения вдоль осей и ориентацию этих осей.
  • Набор трёх скаляров, которые могут быть углами или линейными координатами, для задания положения в пространстве.

В случае вычисления с удельным импульсом:

При старте с поверхности, аэродинамическое сопротивление атмосферы и необходимость набирать высоту вызывают аэродинамические и гравитационные потери, снижающие конечную характеристическую скорость.

Гравитация

  • Универсальное взаимодействие между всеми материальными объектами. Очень слабое. Как правило очень массивные тела - т.е. планеты, луны - оказывают заметное воздействие. Убывает пропорционально квадрату расстояния от центра массы. Таким образом при удалении от гравитирующего объекта в два раза, сила притяжения составит 1/22 = 1/4 от изначальной.

Гравитационная яма

  • Область вокруг планеты с её гравитационным полем. Строго говоря, простирается до бесконечности, но, т.к. гравитация убывает пропорционально квадрату расстояния (если расстояние возрастает в 2 раза, то гравитация убывает в 4), то практический интерес представляет только в пределах сферы гравитационного влияния планеты.

Гравитационная сфера, сфера гравитационного влияния

  • Радиус вокруг небесного тела, в пределах которого его гравитацией ещё нельзя пренебречь. В зависимости от задач выделяют разные сферы.
  • Cфера тяготения – область пространства, внутри которой притяжение планеты превосходит солнечное тяготение.
  • Сфера действия – область пространства, в которой при расчетах за центральное тело принимают планету, а не Солнце.
  • Сфера Хилла – область пространства, в котором могут двигаться тела, оставаясь спутником планеты.

Перегрузка ("g")

  • Отношение ускорения объекта к ускорению свободного падения на поверхности Земли. Измеряется в ускорениях свободного падения на поверхности Земли -- "g".

Продолжение физики

Сила притяжения

  • Сила притяжения характеризуется ускорением свободного падения в гравитационном поле, и в случае Земли на уровне моря равно 9.81 м/с2. Это эквивалентно перегрузке в 1g для объекта, испытывающего точно такое же ускорение, т.е. объект, покоящийся на поверхности Земли испытывает ту же перегрузку, что и движущийся с ускорением 1g (Принцип эквивалентности сил гравитации и инерции). Объект будет весить в два раза больше, если испытывает ускорение 2g и не будет иметь веса вообще, если его ускорение равно нулю. На орбите при неработающем двигателе все объекты будут в невесомости, т.е. при нулевой перегрузке.

Первая космическая скорость (круговая скорость)

  • Скорость, необходимая для круговой орбиты.
Определяется как:

Вторая космическая скорость (скорость убегания, параболическая скорость)

  • Скорость, необходимая для преодоления гравитационной ямы рассматриваемой планеты и удаления на бесконечность.
Определяется как:

где G - гравитационная постоянная, M - масса планеты, и r - расстояние до центра притягивающего тела.
Для полёта к луне бывает не обязательно разгоняться до 2й космической. Достаточно выйти на вытянутую эллиптическую орбиту с апоцентром, достигающим орбиту луны. Тем самым упрощается техническая задача и экономится топливо.

Энергия (механическая)

  • Полная механическая энергия объекта на орбите складывается из потенциальной и кинетической энергий.
Потенциальная энергия:

Кинетическая энергия:

где G - гравитационная постоянная, M - масса планеты, m - масса объекта, R -- расстояние до центра планеты и v - скорость.
Таким образом:
  • Если полная энергия тела отрицательна, то его траектория будет замкнутой, если равна или больше нуля, то параболической и гиперболической соответственно. Все орбиты с равными полуосями соответствуют равным энергиям.
  • В этом и заключается основной смысл законов планетарного движения Кеплера, на основании которых и производится в "KSP" корректирование аппроксимация методом конических сечений. Эллипс - это набор всех точек на плоскости, расположенных таким образом, что сумма расстояний до двух точек - фокусов - является некоторой константой. Один из фокусов кеплеровской орбиты расположен в центре масс объекта, на орбите вокруг которого происходит движение; как только объект приближается к нему, то он обменивает потенциальную энергию на кинетическую энергию. Если объект движется от этого фокуса - эквивалентно, если орбита эллиптическая, поскольку объект приближается к другому фокусу - он обменивает кинетическую энергию на потенциальную энергию. Если летательный аппарат движется непосредственно к или от объекта, то фокусы совпадают с апсидами, в которых кинетическая (апоцентр) или потенциальная (перицентр) энергии нулевые. Если она идеально круглая (например орбита Муна вокруг Кербина), то два фокуса совпадают и расположение апсид не определено, так как каждая точка орбиты является апсидой.
Также существует удельная орбитальная энергия , которая не требует знания массы летательного аппарата для расчета:
; Isp определяет эффективность реактивного двигателя. Чем выше Isp тем более мощной тягой обладает ракета при той же массе топлива. Isp часто даётся в секундах, но более физически корректная величина расстояние за время которая выражается в метрах в секунду или футах в секунду. Чтобы избежать путаницы с использованием этих величин, физически точную Isp (расстояние/время) делят на ускорение свободного падения на поверхности Земли (9.81 м/с2). И этот результат представляется в секундах. Чтобы использовать этот Isp в формулах, его нужно преобразовать обратно в расстояние за время что потребует снова умножения на ускорение свободного падения у поверхности Земли. А т.к. это ускорение используется только для взаимного преобразования данных двух величин, то удельный импульс не меняется при изменении гравитации. Похоже, что в "KSP" использовано значение 9.82 м/с2, что немного снижает расход топлива.
Т.к. удельный импульс это отношение тяги к расходу топлива, то иногда его представляют в , что легко позволяет пользоваться основными единицами СИ.

Аэродинамика

Предельная скорость падения

  • Предельная скорость падения (англ. "Terminal velocity") - это скорость падения тела в газе или жидкости стабилизируется по достижении телом скорости, при которой сила гравитационного притяжения уравновешивается силой сопротивления среды. Более подробно о расчете предельной скорости в этой статье.

Аэродинамическое сопротивление

  • Аэродинамическое сопротивление (англ. "Drag") или "лобовое сопротивление" - это сила, с которой газ действует на движущееся в нём тело; эта сила направлена всегда в сторону, противоположную направлению скорости тела, и является одной из составляющих аэродинамической силы. Эта сила - результат необратимого перехода части кинетической энергии объекта в теплоту. Сопротивление зависит от формы и размеров объекта, ориентации его относительно направления скорости, а также от свойств и состояния среды, в которой объект движется. В реальных средах имеют место: вязкое трение в пограничном слое между поверхностью объекта и средой, потери на образование ударных волн при около- и сверхзвуковых скоростях движения (волновое сопротивление) и на вихреобразование. В зависимости от режима полёта и формы тела будут преобладать те или иные компоненты лобового сопротивления. Например, для затупленных тел вращения, движущихся с большой сверхзвуковой скоростью, оно определяется волновым сопротивлением. У хорошо обтекаемых тел, движущихся с небольшой скоростью - сопротивлением трения и потерями на вихреобразование. Разрежение, возникающее на задней торцевой поверхности обтекаемого тела, тоже приводит к возникновению результирующей силы, направленной противоположно скорости тела,- донного сопротивления, что может составлять значительную часть аэродинамического сопротивления. Более подробно о расчете аэродинамического сопротивления в этой статье.

Как строить ракету и как выйти на орбиту!