Урок-лекция "Теория химического строения А. Бутлерова"

Химия и фармакология

Химическое строение вещества как порядок соединения атомов в молекулах. Взаимное влияние атомов и атомных групп в молекуле. При этом строго соблюдается четырехвалентность атомов углерода и одновалентность водородных атомов. Свойства веществ зависят не только от качественного и количественного состава но и от порядка соединения атомов в молекуле явление изомерии.

§1.3. Основные положения теории химического строения органических соединений А.М.Бутлерова. Химическое строение вещества как порядок соединения атомов в молекулах. Зависимость свойств веществ от химического строения молекул. Взаимное влияние атомов и атомных групп в молекуле.
К шестидесятым годам прошлого столетия в органической химии накопился огромный фактический материал, который требовал объяснения. На фоне беспрерывного накопления экспериментальных фактов особенно остро проявлялась недостаточность теоретических представлений органической химии. Теория отставала от практики, от эксперимента. Такое отставание болезненно отражалось на ходе экспериментальных исследований в лабораториях; химики проводили свои исследования взначительной мере наугад, вслепую, зачастую не понимая природы синтезированных ими веществ и сути реакций, которые приводили к их образованию. Органическая химия, по меткому выражению Вёлера, напоминала дремучий лес, полный чудесных вещей, огромную чащу без выхода, без конца. «Органическая химия, как дремучий лес, в который легко войти, но невозможно выйти». Так, видимо, было суждено, что именно Казань дала миру компас, с которым не страшно зайти в «Дремучий лес органической химии». И этот компас, которым пользуются до сих пор – Теория химического строения Бутлерова. С 60-х годов позапрошлого столетия и поныне любой в Мире учебник по органической химии начинается с постулатов теории Великого русского химика Александра Михайловича Бутлерова.
Основные положения теории химического строения А.М. Бутлерова
1-е положение
Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям . Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

Это положение относится к строению молекул всех веществ. В молекулах предельных углеводородов атомы углерода, соединяясь друг с другом, образуют цепи. При этом строго соблюдается четырехвалентность атомов углерода и одновалентность водородных атомов.

2-е положение. Свойства веществ зависят не только от качественного и количественного состава, но и от порядка соединения атомов в молекуле (явление изомерии).
Изучая строение молекул углеводородов, А. М. Бутлеров пришел к выводу, что у этих веществ, начиная с бутана (С
4 Н 10 ), возможен различный порядок соединения атомов при одном и том же составе молекул.Так, в бутане возможно двоякое расположение атомов углерода: в виде прямой (неразветвленной) и разветвленной цепи.

Эти вещества имеют одинаковую молекулярную формулу, но разные структурные формулы и разные свойства (температуру кипения). Следовательно, это разные вещества. Такие вещества назвали изомерами.

А явление, при котором может существовать несколько веществ, имеющих один и тот же состав и одну и ту же молекулярную массу, но различающихся строением молекул и свойствами, называют явлением изомерии. Причем с увеличением числа атомов углерода а молекулах углеводородов увеличивается число изомеров. Например, существует 75 изомеров (различных веществ), отвечающих формуле С 10 Н 22 , и 1858 изомеров с формулой С 14 Н 30 .

Для состава С 5 Н 12 могут существовать следующие изомеры (их три)-

3-е положение . По свойствам данного вещества можно определить строение его молекулы, а по строению - предвидеть свойства. Доказательство данного положения.Это положение можно доказать на примере неорганической химии.
Пример. Если данное вещество изменяет окраску фиолетового лакмуса на розовый цвет, взаимодействует с металлами, стоящими до водорода, с основными оксидами, основаниями, то мы можем предположить, что это вещество относится к классу кислот, т.е. в своем составе имеет атомы водорода и кислотный остаток. И, наоборот, если данное вещество относится к классу кислот, то проявляет вышеперечисленные свойства. Например: Н
2 S О 4 - серная кислота

4-е положение. Атомы и группы атомов в молекулах веществ взаимно влияют друг на друга.
Доказательство данного положения

Это положение можно доказать на примере неорганической химии.Для этого надо сравнить свойства водных растворов N Н 3 , НС1, Н 2 О (действие индикатора). Во всех трех случаях в состав веществ входят атомы водорода, но они соединены с разными атомами, которые оказывают различное влияние на атомы водорода, поэтому свойства веществ различны.
Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии, предсказал существование различных изомеров и впервые получил некоторые из них.
Осенью 1850 года Бутлеров сдал экзамены на ученую степень магистра химии и немедленно приступил к докторской диссертации «Об эфирных маслах», которую защитил в начале следующего года.

17 февраля 1858 года Бутлеров сделал доклад в Парижском химическом обществе, где впервые изложил свои теоретические идеи о строении вещества.Его доклад вызвал всеобщий интерес и оживленные прения:«Способность атомов соединяться друг с другом различна. Особенно интересен в этом отношении углерод, который, по мнению Августа Кекуле, является четырехвалентным, — говорил в своем докладе Бутлеров — Если представить валентность в виде щупальцев, с помощью которых атомы связываются между собой, нельзя не заметить, что способ связи отражается на свойствах соответствующих соединений».

Подобных мыслей никто до сих пор не высказывал. Может быть, настало время, — продолжал Бутлеров, — когда наши исследования должны стать основой новой теории химического строения веществ. Эта теория будет отличаться точностью математических законов и позволит предвидеть свойства органических соединений».

Через несколько лет, во время второй заграничной командировки, Бутлеров представил на обсуждение созданную им теорию Сообщение он сделал на 36-м съезде немецких естествоиспытателей и врачей в Шпейере. Съезд состоялся в сентябре 1861 года. Он выступил с докладом перед химической секцией. Тема носила более чем скромное название- «Нечто о химическом строении тел».В докладе Бутлеров высказывает основные положения своей теории строения органических соединений.
Труды А.М. Бутлерова

Кабинет А.М. Бутлерова

Теория химического строения позволила объяснить многие факты, накопившиеся в органической химии в начале второй половины ХIХ в., доказала, что с помощью химических методов (синтеза, разложения и других реакций) можно установить порядок соединения атомов в молекулах (этим самым была доказана возможность познания строения вещества);

Внесла новое в атомно-молекулярное учение (порядок расположения атомов в молекулах, взаимное влияние атомов, зависимость свойств от строения молекул вещества). Теория рассматривала молекулы вещества как упорядоченную систему, наделенную динамикой взаимодействующих атомов. В связи с этим атомно-молекулярное учение получило свое дальнейшее развитие, что имело большое значение для науки химии;

Дала возможность предвидеть свойства органических соединений на основании строения, синтезировать новые вещества, придерживаясь плана;

Позволила объяснить многообразие органических соединений;

Дала мощный толчок синтезу органических соединений, развитию промышленности органического синтеза (синтез спиртов, эфиров, красителей, лекарственных веществ и др.).

Разработав теорию и подтвердив правильность ее синтезом новых соединений А.М. Бутлеров не считал теорию абсолютной и неизменной. Он утверждал, что она должна развиваться, и предвидел, что это развитие пойдет путем разрешения противоречий между теоретическими знаниями и возникающими новыми фактами.

Теория химического строения, как и предвидел А.М. Бутлеров, не осталась неизменной. Дальнейшее ее развитие шло главным образом в двух взаимосвязанных направлениях

Первое из них было предсказано самим А.М.Бутлеровым

Он считал,что наука в будущем сможет устанавливать не только порядок соединения атомов в молекуле,но и их пространственное расположение. Учение о пространственном строении молекул, называемое стереохимией (греч. «стереос» - пространственный), вошло в науку в 80-х годах прошлого столетия. Оно позволило объяснять и предсказывать новые факты, не вмещавшиеся в рамки прежних теоретических представлений.
Второе направление связано с применением в органической химии учения об электронном строении атомов, развитого в физике ХХ века. Это учение позволило понять природу химической связи атомов, выяснить сущность их взаимного влияния, объяснить причину проявления веществом тех или иных химических свойств.

Структурные формулы развернутые и краткие

Причины многообразия органических соединений

Атомы углерода образуют одинарные (простые), двойные и тройные связи:

Существуют гомологические ряды:

Изомеры:


PAGE \* MERGEFORMAT 1


А также другие работы, которые могут Вас заинтересовать

13229. НЕЙСТОН І ПЕРИФІТОН 521 KB
ЛАБОРАТОРНА РОБОТА № 6 НЕЙСТОН І ПЕРИФІТОН Мета: Ознайомитись з особливостями будови та способом життя організмів нейстону і перифітону. Контрольні запитання Дати визначення поняття нейстон. Які умови необхідні для розвитку нейстону Які є два ви...
13230. МЕТОДИКА ПРОЕКТУВАННЯ ПРОСТИХ РЕЛЯЦІЙНИХ БАЗ ДАНИХ 1018 KB
МЕТОДИКА ПРОЕКТУВАННЯ ПРОСТИХ РЕЛЯЦІЙНИХ БАЗ ДАНИХ За матеріалами книги Glenn A. Jackson Relational Database Design With Microcomputer Applications У 1965 р. зявилися перші результати в області управління базами даних роботи Чарльза Бахмана. З тієї пори технології баз даних пройшли ве
13231. Учбово-відлагоджувальний стенд EV8031/AVR (V3.2) 1.13 MB
Учбово-відлагоджувальний стенд EV8031/AVR V3.2 Методичні вказівки до виконання лабораторних робіт №№ 610 ВСТУП Стенд є мікропроцесорним контроллером оснащеним памяттю програм памяттю даних і різноманітними периферійними пристроями. Він д...
13232. Теоретичні основи теплотехніки, Термодинаміка, теплопередача і ТСУ, Енергетичні установки 2.88 MB
Козак Ф.В. Гаєва Л.І. Негрич В.В. Войцехівська Т.Й. Демянчук Я.М. Лабораторний практикум з дисциплін Теоретичні основи теплотехніки Термодинаміка теплопередача і ТСУ Енергетичні установки Наведені загальні положення організації проведення лаборато
13233. Вивчення стенду, команд однокристальної ЕОМ КР1816ВЕ31 27.5 KB
Лабораторна робота №1. Вивчення стенду команд однокристальної ЕОМ КР1816ВЕ31 Тема: Вивчення стенду команд однокристальної ЕОМ КР1816ВЕ31. Мета роботи: Вивчення функціональних можливостей учбовоналагоджувального стенду внутрішньої структури і системи команд ЕОМ КР1816ВЕ3...
13234. Напівпровідникові діоди 279.5 KB
Лабораторна робота №1 Тема: Напівпровідникові діоди Мета: 1. Дослідження напруги та струму діода при прямому та оберненому зміщенні рп переходу. Побудова та дослідження вольтамперної характеристики ВАХ для напівпровідникового діода. Дослідження опо
13235. Загальна характеристика друкарського устаткування та класифікація друкарських машин. Технологічні особливості високого та офсетного плоского способів друку 107.5 KB
ЛАБОРАТОРНА РОБОТА № 1 На тему: Загальна характеристика друкарського устаткування та класифікація друкарських машин. Технологічні особливості високого та офсетного плоского способів друку Мета: Ознайомитись із загальною характеристикою друкарського устат...
13236. Пристрої для виготовлення коректурних відбитків 52 KB
ЛАБОРАТОРНА РОБОТА № 2 На тему: Пристрої для виготовлення коректурних відбитків Мета роботи: вивчення технологічного процесу виготовлення коректурних відбитків у поліграфічному виконанні принципів побудови роботи вузлів і механізмів установок ФКУ і ФКУ200...
13237. Фотонасвітлювальні машини і автомати для запису зображень на фотоматеріалі. Фоторепродукційні апарати. Машини для оброблення фотоматеріалів 48.5 KB
ЛАБОРАТОРНА РОБОТА № 3 На тему: Фотонасвітлювальні машини і автомати для запису зображень на фотоматеріалі. Фоторепродукційні апарати. Машини для оброблення фотоматеріалів Мета роботи: вивчення технологічного процесу виготовлення текстових та ілюстраційних

Содержание урока: Теории строения органических соединений: предпосылки создания, основные положения. Химическое строение как порядок соединения и взаимного влияния атомов в молекулах. Гомология, изомерия. Зависимость свойств веществ от химического строения. Основные направления развития теории химического строения. Зависимость появления токсичности у органических соединений от состава и строения их молекул (длина углеродной цепи и степень ее разветвленности, наличие кратных связей, образование циклов и пероксидных мостиков, присутствие атомов галогенов), а также от растворимости и летучести соединения.

Цели урока:

  • Организовать деятельность учащихся по ознакомлению и первичному закреплению основных положений теории химического строения.
  • Показать учащимся универсальный характер теории химического строения на примере неорганических изомеров и взаимного влияния атомов в неорганических веществах.

Ход урока:

1. Организационный момент.

2. Актуализация знаний учащихся.

1) Что изучает органическая химия?

2) Какие вещества называют изомерами?

3) Какие вещества называют гомологами?

4) Назовите известные вам теории, возникшие в органической химии в начале XIX века.

5) Какими недостатками обладала теория радикалов?

6) Какими недостатками обладала теория типов?

3. Постановка целей и задач урока.

Представления о валентности составили важную часть теории химического строения А.М. Бутлерова в 1861 г.

Периодический закон, сформулированный Д.И. Менделеевым в 1869 г., вскрыл зависимость валентности элемента от его положения в периодической системе.

Оставалось неясным большое многообразие органических веществ, имеющих одинаковый качественный и количественный состав, но разные свойства. К примеру, было известно около 80 разнообразных веществ, отвечающих составу C 6 H 12 O 2 . Йенс Якоб Берцелиус предложил называть эти вещества изомерами.

Ученые многих стран своими работами подготовили почву для создания теории, объясняющей строение и свойства органических веществ.

На съезде немецких естествоиспытателей и врачей в городе Шпейере был прочитан доклад, называвшийся “Нечто в химическом строении тел”. Автором доклада был профессор Казанского университета Александр Михайлович Бутлеров. Именно это самое “нечто” и составило теорию химического строения, которая легла в основу наших современных представлений о химических соединениях.

Органическая химия получила прочную научную основу, обеспечившую ее стремительное развитие в последующее столетие вплоть до наших дней. Эта теория позволила предсказывать существование новых соединений и их свойства. Понятие о химическом строении позволило объяснить такое загадочное явление, как изомерия.

Основные положения теории химического строения сводятся к следующему:
1. Атомы в молекулах органических веществ соединяются в определенной последовательности согласно их валентности.

2. Свойства веществ определяются качественным, количественным составом, порядком соединения и взаимным влиянием атомов и групп атомов в молекуле.

3. Строение молекул может быть установлено на основе изучения их свойств.

Рассмотрим эти положения более подробно. Молекулы органических веществ содержат атомы углерода (валентность IV), водорода (валентность I), кислорода (валентность II), азота (валентность III). Каждый атом углерода в молекулах органических веществ образует четыре химические связи с другими атомами, при этом атомы углерода могут соединяться в цепи и кольца. На основании первого положения теории химического строения мы будем составлять структурные формулы органических веществ. Например, установлено, что метан имеет состав СН 4 . Учитывая валентности атомов углерода и водорода можно предложить только одну структурную формулу метана:

Химическое строение других органических веществ может быть описано следующими формулами:

этиловый спирт

Второе положение теории химического строения описывает известную нам взаимосвязь: состав – строение – свойства. Посмотрим проявление этой закономерности на примере органических веществ.

Этан и этиловый спирт имеют разный качественный состав. Молекула спирта в отличие от этана содержит атом кислорода. Как это скажется на свойствах?

Введение в молекулу атома кислорода резко меняет физические свойства вещества. Это подтверждает зависимость свойств от качественного состава.

Сравним состав и строение углеводородов метана, этана, пропана и бутана.

Метан, этан, пропан и бутан имеют одинаковый качественный состав, но разный количественный (число атомов каждого элемента). Согласно второму положению теории химического строения они должны обладать различными свойствами.

Вещество Температура кипения, °С Температура плавления, °С
СН 4 – 182,5 – 161,5
С 2 Н 6 – 182,8 – 88,6
С 3 Н 8 – 187,6 – 42,1
С 4 Н 10 – 138,3 – 0,5

Как видно из таблицы, с увеличением числа атомов углерода в молекуле происходит повышение температур кипения и плавления, что подтверждает зависимость свойств от количественного состава молекул.

Молекулярной формуле С 4 Н 10 соответствует не только бутан, но и его изомер изобутан:

Изомеры имеют одинаковый качественный (атомы углерода и водорода) и количественный (4 атома углерода и десять атомов водорода) состав, но отличаются друг от друга порядком соединения атомов (химическим строением). Посмотрим как различие в строении изомеров скажется на их свойствах.

Углеводород разветвленного строения (изобутан) имеет более высокие температуры кипения и плавления, чем углеводород нормального строения (бутан). Это можно объяснить более близким расположением молекул друг к другу в бутане, что повышает силы межмолекулярного притяжения и, следовательно, требует больших затрат энергии для их отрыва.

Третье положение теории химического строения показывает обратную связь состава, строения и свойств веществ: состав – строение – свойства. Рассмотрим это на примере соединений состава С 2 Н 6 О.

Представим, что у нас имеются образцы двух веществ с одинаковой молекулярной формулой С 2 Н 6 О, которая была определена в ходе качественного и количественного анализа. Но как узнать химическое строение этих веществ? Ответить на этот вопрос поможет изучение их физических и химических свойств. При взаимодействии первого вещества с металлическим натрием реакция не идет, а второе – активно с ним взаимодействует с выделением водорода. Определим количественное отношение веществ в реакции. Для этого к известной массе второго вещества прибавим определенную массу натрия. Измерим объем водорода. Вычислим количества веществ. При этом окажется, что из двух моль исследуемого вещества выделяется один моль водорода. Следовательно, каждая молекула этого вещества является источником одного атома водорода. Какой вывод можно сделать? Только один атом водорода отличается по свойствам и значит строением (с какими атомами связан) от всех остальных. Учитывая валентность атомов углерода, водорода и кислорода для данного вещества может быть предложена только одна формула:

Для первого вещества может быть предложена формула, в которой все атомы водорода имеют одинаковое строение и свойства:

Аналогичный результат можно получить и при изучении физических свойств этих веществ.

Таким образом, на основании изучения свойств веществ можно сделать вывод о его химическом строении.

Значение теории химического строения трудно переоценить. Она вооружила химиков научной основой для изучения строения и свойств органических веществ. Подобное значение имеет и Периодический закон, сформулированный Д.И. Менделеевым. Теория строения обобщила все научные взгляды, сложившиеся в химии того времени. Ученые смогли объяснить поведение органических веществ в ходе химических реакций. На основе теории А.М. Бутлеров предсказал существование изомеров некоторых веществ, которые позднее были получены. Так же как и Периодический закон, теория химического строения получила свое дальнейшее развитие после становления теории строения атома, химической связи и стереохимии.

Первой возникла в начале XIX в. теория радикалов (Ж. Гей-Люссак, Ф. Велер, Ю. Либих). Радикалами были названы группы атомов, переходящие без изменения при химических реакциях из одного соединения в другое. Такое понятие о радикалах сохранилось, но большинство других положений теории радикалов оказались неправильными.

Согласно теории типов (Ш. Жерар) все органические вещества можно разделить на типы, соответс­твующие определенным неорганическим веществам. Например, спирты R-OH и простые эфиры R-O-R рассматривались как представители типа воды H-OH, в которой атомы водорода замещены радикалами. Теория типов создала классификацию органических веществ, некоторые принципы которой применяются в настоящее время.

Современная теория строения органических соединений создана выдающимся русским учёным А.М. Бутлеровым.

Основные положения теории строения органических соединений А.М. Бутлерова

1. Атомы в молекуле располагаются в определенной последовательности согласно их валентности. Валентность атома углерода в органических соединениях равна четырем.

2. Свойства веществ зависят не только от того, какие атомы и в каких количествах входят в состав молекулы, но и от того, в каком порядке они соединены между собой.

3. Атомы или группы атомов, входящих в состав молекулы, взаимно влияют друг на друга, от чего зависят химическая активность и реакционная способность молекул.

4. Изучение свойств веществ позволяет определить их химичес­кое строение.

Взаимное влияние соседних атомов в молекулах является важнейшим свойством органических соединений. Это влияние передается или по цепи простых связей или по цепи сопряженных (чередующихся) простых и двойных связей.

Классификация органических соединений основана на анализе двух аспектов строения молекул – строения углеродного скелета и наличия функциональных групп.


Органические соединения

Углеводороды Гетероциклические соединения

Предель- Непре- Арома-

ные дельные тические

Алифатические Карбоциклические

Предельные Непредельные Алициклические Ароматические

(Алканы) (Циклоалканы) (Арены)

С п Н 2п +2 С п Н 2п С п Н 2п -6

Конец работы -

Эта тема принадлежит разделу:

Введение. Основы современной теории строения

Органических соединений.. введение.. биоорганическая химия изучает строение и свойства веществ участвующих в процессах жизнедеятельности в..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Алкены Алкадиены Алкины
СпН2п СпН2п-2 СпН2п-2 Рис. 1. Классификация органических соединений по строению

Электронное строение атома углерода. Гибридизация.
Для валентного электронного слоя атома С, находящегося вглавной подгруппе четвёртой группы второго периода Периодической таблицы Д. И. Менделеева главное квантовое число n = 2, побочное (орбитально

Сопряженные системы
Различают два типа сопряженных систем (и сопряжений). 1. p, p-сопряжение - электроны делокализованы

ТЕМА 3. Химическое строение и изомерия органических соединений
Изомерия органических соединений. Если два или больше индивидуальных веществ имеют одинаковый количественный состав (молекулярную формулу), но отличаются друг от друга пос

Конформации органических молекул
Поворот вокруг s-связи С–С совершается сравнительно легко, углеводородная цепь может принимать разные формы. Конформационные формы легко переходят друг в друга и поэтому не являются различными соед

Конформации циклических соединений.
Циклопентан. У пятичленного цикла в плоской форме валентные углы равны 108°, что близко к нормальному значению для sр3-гибридного атома. Поэтому в плоском циклопентане, в отличие от цикл

Конфигурационные изомеры
Это стереоизомеры с различным расположением вокруг определенных атомов других атомов, радикалов или функциональных групп в пространстве относительно друг друга. Различают понятия диастере

Общая характеристика реакций органических соединений.
Кислотность и основность органических соединений. Для оценки кислотности и основности органических соединений наибольшее значение имеют две теории – теория Бренстеда и тео

Основания Бренстеда – нейтральные молекулы или ионы, способные присоединять протон (акцепторы протонов).
Кислотность и основность являются не абсолютными, а относительными свойствами соединений: кислотные свойства обнаруживаются лишь в присутствии основания; основные свойства – только в присутствии ки

Общая характеристика реакций органических соединений
Большинство органических реакций включает несколько по­следовательных (элементарных) стадий. Детальное описание со­вокупности этих стадий называется механизмом. Механизм реакции -

Селективность реакций
Во многих случаях в органическом соединении присутствуют несколько неравноценных реакционных центров. В зависимости от строения продуктов реакции говорят о региоселективности, хемоселективности и с

Радикальные реакции.
Хлор реагирует с предельными углеводородами только под влия­нием света, нагревания или в присутствии катализаторов, при­чем последовательно замещаются хлором все атомы водорода: СН4

Реакции электрофильного присоединения
Ненасыщенные углеводороды - алкены, циклоалкены, алкадиены и алкины - проявляют способность к реакциям присоединения, так как содержат двойные или тройные связи. Более важной in vivo является двойн

И элиминирования у насыщенного атома углерода
Реакции нуклеофильного замещения у sp3- гибридизованного атома углерода: гетеро­литические реакции, обусловленные поляризацией s- связи углерод - гетероатом (галогенопро

Реакции нуклеофильного замещения с участием sр2-гибридизованного атома углерода.
Механизм реакций этого типа рассмотрим на примере взаимодействия карбоновых кислот со спиртами (реакция этерификации). В карбоксильной группе кислоты реализуется р,p- сопряжение, поскольку пара эле

Реакции нуклеофильного замещения в ряду карбоновых кислот.
Только с чисто формальных позиций можно рассматривать кар­боксильную группу как комбинацию карбонильной и гидроксильной функций. Фактически их взаимное влияние друг на друга таково, что полностью и

Органических соединений.
Окислительно-восстановительные реакции (ОВР) занимают большое место в органической химии. Важнейшее значение имеют ОВР для процессов жизнедеятельности. С их помощью организм удовлет

Участвующие в процессах жизнедеятельности
Подавляющее большинство органических веществ, участвующих в процессах метаболизма, представляют собой соединения с двумя и более функциональными группами. Такие соединения принято классифицировать

Двухатомные фенолы
Двухатомные фенолы – пирокатехин, резорцин, гидрохинон – входят в состав многих природных соединений. Все они дают характерное окрашивание с хлоридом железа. Пирокатехин (о-дигидроксибензол, катехо

Дикарбоновые и ненасыщенные карбоновые кислоты.
Карбоновые кислоты, содержащие в своем составе одну карбоксильную группу, называют одноосновными, две - двухосновными т. д. Дикарбоновые кислоты – белые кристаллические вещества, обладающи

Аминоспирты
2-Аминоэтанол (этаноламин, коламин) – структурный компонент сложных липидов, образуется путем размыкания напряженных трехчленных циклов этиленоксида и этиленимина аммиаком или водой соответственно

Гидрокси- и аминокислоты.
Гидроксикислоты содержат в молекуле одновременно гидроксильную и карбоксильную группы, аминокислоты - карбоксильную и аминогруппу. В зависимости от расположения гидрокси- или аминогруппы п

Оксокислоты
Оксокислоты - соединения, содержащие одновременно карбоксильную и альдегидную (или кетонную) группы. В соответствии с этим различают альдегидокислоты и кетокислоты. Простейшей альдегидокис

Гетерофункциональные производные бензола как лекарственные средства.
Последние десятилетия характеризуются появлением множества новых лекарственных средств и препаратов. Вместе с тем большое значение продолжают сохранять некоторые группы известных ранее лекарственны

ТЕМА 10. Биологически важные гетероциклические соединения
Гетероциклические соединения (гетероциклы) – соединения, включающие в цикл один или несколько атомов, отличных от углерода (гетероатомов). Гетероциклические системы лежат в основе с

ТЕМА 11. Аминокислоты, пептиды, белки
Строение и свойства аминокислот и пептидов. Аминокислоты - соединения, в молекулах которых одновременно присутствуют амино- и карбоксильные группы. Природные a-амин

Пространственное строение полипептидов и белков
Для высокомолекулярных полипептидов и белков наряду с первичной структурой характерны более высокие уровни организации, которые принято называть вторичной, третичной и четвертичной структурами.

ТЕМА 12. Углеводы: моно, ди- и полисахариды
Углеводы разделяют на простые (моносахариды) и сложные (полисахариды). Моносахариды (монозы). Это гетерополифункциональные соединения, содержащие карбонильную и несколько г

ТЕМА 13. Нуклеотиды и нуклеиновые кислоты
Нуклеиновые кислоты (полинуклеотиды) – это биополимеры, мономерными звеньями которых являются нуклеотиды. Нуклеотид представляет собой трехкомпонентную структуру, состоящую

Нуклеозиды.
Гетероциклические основания образуют N-гликозиды с D-рибозой или 2-дезокси-D-рибозой. В химиии нуклеиновых кислот такие N-гликозиды называют нуклеозидами. D-рибоза и 2-дезокси- D -рибоза в состав п

Нуклеотиды.
Нуклеотидами называются фосфаты нуклеозидов. Фосфорная кислота обычно этерифицирует спиртовый гидроксил при С-5" или С-3" в остатке рибозы или дезоксирибозы (атомы цикла азотистых оснований нумерую

Стероиды
Стероиды широко распространены в природе, выполняют в организме разнообразные функции. К настоящему времени известно около 20 000 стероидов; более 100 из них применяется в медицине. Стероиды имеют

Стероидные гормоны
Гормоны – биологически активные вещества, образующиеся в результате деятельности желез внутренней секреции и принимающие участие в регуляции обмена веществ и физиологических функций в организме.

Стерины
Как правило, клетки очень богаты стеринами. В зависимости от источника выделения различают зоостерины (из животных), фитостерины (из растений), микостерины (из грибов) и стерины микроорганизмов. В

Желчные кислоты
В печени стерины, в частности холестерин, превращаются в желчные кислоты. Алифатическая боковая цепь у С17 в желчных кислотах, производных углеводорода холана, состоит из 5 атомов углеро

Терпены и терпеноиды
Под этим названием объединяют ряд углеводородов и их кислородсодержащих производных - спиртов, альдегидов и кетонов, углеродный скелет которых построен из двух, трех и более звеньев изопрена. Сами

Витамины
Витаминами обычно называют органические вещества, присутствие которых в небольшом количестве в пище человека и животных необходимо для их нормальной жизнедеятельности. Это классическое опр

Житрорастворимые витамины
Витамин А относится к сесквитерпенам, содержится в масле, молоке, яичном желтке, рыбьем жире; свиное сало и маргарин его не содержат. Это витамин роста; недостаток его в пище вызыв

Водорастворимые витамины
В конце прошлого века тысячи моряков на японских судах страдали, а многие из них умирали мучительной смертью от таинственной болезни «бери-бери». Одной из загадок бери-бери было то, что моряки на с

Основные положения теории химического строения А.М. Бутлерова

1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

3. Свойства веществ зависят от их химического строения.

4. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.

5. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии, предсказал существование различных изомеров и впервые получил некоторые из них.

Развитию теории строения способствовали работы Кекуле, Кольбе, Купера и Вант-Гоффа. Однако их теоретические положения не носили общего характера и служили, главным образом, целям объяснения экспериментального материала.

2. Формулы строения

Формула строения (структурная формула) описывает порядок соединения атомов в молекуле, т.е. ее химическое строение. Химические связи в структурной формуле изображают черточками. Связь между водородом и другими атомами обычно не указывается (такие формулы называются сокращенными структурными формулами).

Например, полная (развернутая) и сокращенная структурные формулы н-бутана C4H10имеют вид:

Другой пример - формулы изобутана.

Часто используется еще более краткая запись формулы, когда не изображают не только связи с атомом водорода, но и символы атомов углерода и водорода. Например, строение бензола C6H6 отражают формулы:

Структурные формулы отличаются от молекулярных (брутто) формул, которые показывают только, какие элементы и в каком соотношении входят в состав вещества (т.е. качественный и количественный элементный состав), но не отражают порядка связывания атомов.

Например, н-бутан и изобутан имеют одну молекулярную формулу C4H10, но разную последовательность связей.

Таким образом, различие веществ обусловлено не только разным качественным и количественным элементным составом, но и разным химическим строением, которое можно отразить лишь структурными формулами.

3. Понятие о изомерии

Еще до создания теории строения были известны вещества одинакового элементного состава, но c разными свойствами. Такие вещества были названы изомерами, а само это явление - изомерией.

В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов. Таким образом,

изомерия - это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Например, при содержании в молекуле 4-х атомов углерода и 10-ти атомов водорода возможно существование 2-х изомерных соединений:

В зависимости от характера отличий в строении изомеров различают структурную и пространственную изомерию.

4. Структурные изомеры

Структурные изомеры - соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Например, составу C5H12 соответствует 3 структурных изомера:

Другой пример:

5. Стереоизомеры

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.

Пространственными изомерами являются оптические и цис-транс изомеры (шарики разного цвета обозначают разные атомы или атомные группы):

Молекулы таких изомеров несовместимы в пространстве.

Стереоизомерия играет важную роль в органической химии. Подробнее эти вопросы будут рассматриваться при изучении соединений отдельных классов.

6. Электронные представления в органической химии

Применение электронной теории строения атома и химической связи в органической химии явилось одним из важнейших этапов развития теории строения органических соединений. Понятие о химическом строении как последовательности связей между атомами (А.М. Бутлеров) электронная теория дополнила представлениями обэлектронном и пространственном строении и их влиянии на свойства органических соединений. Именно эти представления дают возможность понять способы передачи взаимного влияния атомов в молекулах (электронные и пространственные эффекты) и поведение молекул в химических реакциях.

Согласно современным представлениям свойства органических соединений определяются:

природой и электронным строением атомов;

типом атомных орбиталей и характером их взаимодействия;

типом химических связей;

химическим, электронным и пространственным строением молекул.

7. Свойства электрона

Электрон имеет двойственную природу. В разных экспериментах он может проявлять свойства как частицы, так и волны. Движение электрона подчиняется законам квантовой механики. Связь между волновыми и корпускулярными свойствами электрона отражает соотношение де Бройля.

Энергию и координаты электрона, как и других элементарных частиц, невозможно одновременно измерить с одинаковой точностью (принцип неопределенностиГейзенберга). Поэтому движение электрона в атоме или в молекуле нельзя описать с помощью траектории. Электрон может находиться в любой точке пространства, но с разной вероятностью.

Часть пространства, в котором велика вероятность нахождения электрона, называют орбиталью или электронным облаком.

Например:

8. Атомные орбитали

Атомная орбиталь (АО) - область наиболее вероятного пребывания электрона (электронное облако) в электрическом поле ядра атома.

Положение элемента в Периодической системе определяет тип орбиталей его атомов (s-, p-, d-, f-АО и т.д.), различающихся энергией, формой, размерами и пространственной направленностью.

Для элементов 1-го периода (Н, He) характерна одна АО - 1s.

В элементах 2-го периода электроны занимают пять АО на двух энергетических уровнях: первый уровень 1s; второй уровень - 2s, 2px, 2py, 2pz. (цифры обозначают номер энергетического уровня, буквы - форму орбитали).

Состояние электрона в атоме полностью описывают квантовые числа.

Химическая структура молекулы представляет собой наиболее характерную и уникальную ее сторону, поскольку она определяет ее общие свойства (механические, физические, химические и биохимические). Любое изменение в химической структуре молекулы влечет за собой изменение ее свойств. В случае незначительных структурных изменений, внесенных в одну молекулу, следуют небольшие изменения ее свойств (обычно затрагивает физические свойства), если же молекула испытала глубокие структурные изменения, то и ее свойства (особенно химические) будут глубоко изменены.

Например, Альфа-аминопропионовая кислота (Альфа-аланин) имеет следующую структуру:

Альфа-аланин

Что мы видим:

  1. Наличие определенных атомов (С, Н, О, N),
  2. определенное количество атомов, принадлежащих каждому классу, которые связаны в определенном порядке;

Все эти конструктивные особенности определяют целый ряд свойств Альфа-аланина, таких как: твердое агрегатное состояние, температура кипения 295° С, растворимость в воде, оптическая активность, химические свойства аминокислот и т. д.

При наличии связи аминогруппы с другим атомом углерода (т.е. произошло незначительное структурное изменение), что соответствует бета-аланину:

Бета-аланин

Общие химические свойства по-прежнему остаются характерными для аминокислот, но температура кипения составляет уже 200° C и отсутствует оптическая активность.

Если же, например, два атомы в этой молекуле соединены атомом N в следующем порядке (глубокое структурное изменение):

тогда образованное вещество — 1-нитропропан по своим физическим и химическим свойствам совершенно не похож на аминокислоты: 1-нитро-пропан — это желтая жидкость, с температурой кипения 131°С, нерастворим в воде.

Таким образом, взаимосвязь «структура-свойства» позволяет описывать общие свойства вещества с известной структурой и, наоборот, позволяет найти химическую структуру вещества, зная его общие свойства.

Общие принципы теории строения органических соединений

В сущности определения структуры органического соединения, лежат следующие принципы, которые вытекают из связи между их структурой и свойствами:

а) органические вещества, в аналитически чистом состоянии, имеют один и тот же состав, независимо от способа их получения;

б) органические вещества, в аналитически чистом состоянии, обладает постоянными физико-химическими свойствами;

в) органические вещества с постоянным составом и свойствами, имеет только одну уникальную структуру.

В 1861 г. великий русский ученый А. М. Бутлеров в своей статье «О химическом строении вещества» раскрыл основную идею теории химического строения, заключающуюся во влиянии способа связи атомов в органическом веществе на его свойства. Он обобщил все имеющиеся к тому времени знания и представления о строении химических соединений в теории строения органических соединений.

Основные положения теории А. М. Бутлерова

кратко могут быть изложены следующим образом:

  1. В молекуле органического соединения атомы связаны в определенной последовательности, что и определяет его строение.
  2. Атом углерода в составе органических соединений имеет валентность равную четырем.
  3. При одинаковом составе молекулы возможно несколько вариантов соединения атомов этой молекулы между собой. Такие соединения, имеющие один состав, но различное строение были названы изомерами, а подобное явление – изомерией.
  4. Зная строение органического соединения можно предсказать его свойства; зная свойства органического соединения можно предсказать его строение.
  5. Атомы, образующие молекулу подвержены взаимному влиянию, что определяет их реакционную способность. Непосредственно связанные атомы оказывают большее влияние друг на друга, влияние не связанных непосредственно атомов значительно слабее.

Ученик А.М. Бутлерова — В. В. Марковников продолжил изучение вопроса взаимного влияния атомов, что нашло свое отражение в 1869 году в его диссертационной работе «Материалы по вопросу о взаимном влиянии атомов в химических соединениях».

Заслуга А.М. Бутлерова и значение теории химического строения исключительно велико ля химического синтеза. Открылась возможность предсказать основные свойства органических соединений, предвидеть пути их синтеза. Благодаря теории химического строения химики впервые оценили молекулу как упорядоченную систему со строгим порядком связи между атомами. И в настоящее время основные положения теории Бутлерова, несмотря на изменения и уточнения, лежат в основе современных теоретических представлений органической химии.

Категории ,