Чему равна сумма всех углов треугольника. Теорема о сумме углов треугольника

Треугольник представляет собой многоугольник, имеющий три стороны (три угла). Чаще всего стороны обозначают маленькими буквами, соответствующими заглавным буквам, которыми обозначают противоположные вершины. В данной статье мы ознакомимся с видами этих геометрических фигур, теоремой, которая определяет, чему равняется сумма углов треугольника.

Виды по величине углов

Различают следующие виды многоугольника с тремя вершинами:

  • остроугольный, у которого все углы острые;
  • прямоугольный, имеющий один прямой угол, при его образующие, называют катетами, а сторона, которая размещена противоположно прямому углу, именуется гипотенузой;
  • тупоугольный, когда один ;
  • равнобедренный, у которого две стороны равные, и называются они боковыми, а третья - основанием треугольника;
  • равносторонний, имеющий все три равные стороны.

Свойства

Выделяют основные свойства, которые характерны для каждого вида треугольника:

  • напротив большей стороны всегда располагается больший угол, и наоборот;
  • напротив равных по величине сторон находятся равные углы, и наоборот;
  • у любого треугольника есть два острых угла;
  • внешний угол больше по сравнению с любым внутренним углом, не смежным с ним;
  • сумма каких-либо двух углов всегда меньше 180 градусов;
  • внешний угол равняется сумме остальных двух углов, которые не межуют с ним.

Теорема о сумме углов треугольника

Теорема утверждает, что если сложить все углы данной геометрической фигуры, которая расположена на евклидовой плоскости, то их сумма будет составлять 180 градусов. Попробуем доказать данную теорему.

Пускай у нас есть произвольный треугольник с вершинами КМН.

Через вершину М проведем КН (еще эту прямую называют прямой Евклида). На ней отметим точку А таким образом, чтоб точки К и А были расположены с разных сторон прямой МН. Мы получаем равные углы АМН и КНМ, которые, как и внутренние, лежат накрест и образовываются секущей МН совместно с прямыми КН и МА, которые являются параллельными. Из этого следует, что сумма углов треугольника, расположенных при вершинах М и Н, равняется размеру угла КМА. Все три угла составляют сумму, которая равна сумме углов КМА и МКН. Поскольку данные углы являются внутренними односторонними относительно параллельных прямых КН и МА при секущей КМ, их сумма составляет 180 градусов. Теорема доказана.

Следствие

Из выше доказанной теоремы вытекает следующее следствие: любой треугольник имеет два острых угла. Чтобы это доказать, допустим, что данная геометрическая фигура имеет всего один острый угол. Также можно предположить, что ни один из углов не является острым. В этом случае должно быть как минимум два угла, величина которых равна или больше 90 градусов. Но тогда сумма углов будет больше, чем 180 градусов. А такого быть не может, поскольку согласно теореме сумма углов треугольника равна 180° - не больше и не меньше. Вот это и нужно было доказать.

Свойство внешних углов

Чему равна сумма углов треугольника, которые являются внешними? Ответ на этот вопрос можно получить, применив один из двух способов. Первый заключается в том, что необходимо найти сумму углов, которые взяты по одному при каждой вершине, то есть трех углов. Второй подразумевает, что нужно найти сумму всех шести углов при вершинах. Для начала разберемся с первым вариантом. Итак, треугольник содержит шесть внешних углов - при каждой вершине по два.

Каждая пара имеет равные между собой углы, поскольку они являются вертикальными:

∟1 = ∟4, ∟2 = ∟5, ∟3 = ∟6.

Кроме этого, известно, что внешний угол у треугольника равняется сумме двух внутренних, которые не межуются с ним. Следовательно,

∟1 = ∟А + ∟С, ∟2 = ∟А + ∟В, ∟3 = ∟В + ∟С.

Из этого получается, что сумма внешних углов, которые взяты по одному возле каждой вершины, будет равна:

∟1 + ∟2 + ∟3 = ∟А + ∟С + ∟А + ∟В + ∟В + ∟С = 2 х (∟А + ∟В + ∟С).

С учетом того, что сумма углов равняется 180 градусам, можно утверждать, что ∟А + ∟В + ∟С = 180°. А это значит, что ∟1 + ∟2 + ∟3 = 2 х 180° = 360°. Если же применяется второй вариант, то сумма шести углов будет, соответственно, большей в два раза. То есть сумма внешних углов треугольника будет составлять:

∟1 + ∟2 + ∟3 + ∟4 + ∟5 + ∟6 = 2 х (∟1 + ∟2 + ∟2) = 720°.

Прямоугольный треугольник

Чему равняется сумма углов прямоугольного треугольника, являющихся острыми? Ответ на этот вопрос, опять же, вытекает из теоремы, которая утверждает, что углы в треугольнике в сумме составляют 180 градусов. А звучит наше утверждение (свойство) так: в прямоугольном треугольнике острые углы в сумме дают 90 градусов. Докажем его правдивость.

Пускай нам дан треугольник КМН, у которого ∟Н = 90°. Необходимо доказать, что ∟К + ∟М = 90°.

Итак, согласно теореме о сумме углов ∟К + ∟М + ∟Н = 180°. В нашем условии сказано, что ∟Н = 90°. Вот и получается, ∟К + ∟М + 90° = 180°. То есть ∟К + ∟М = 180° - 90° = 90°. Именно это нам и следовало доказать.

В дополнение к вышеописанным свойствам прямоугольного треугольника, можно добавить и такие:

  • углы, которые лежат против катетов, являются острыми;
  • гипотенуза треугольна больше любого из катетов;
  • сумма катетов больше гипотенузы;
  • катет треугольника, который лежит напротив угла 30 градусов, в два раза меньше гипотенузы, то есть равняется ее половине.

Как еще одно свойство данной геометрической фигуры можно выделить теорему Пифагора. Она утверждает, что в треугольнике с углом 90 градусов (прямоугольном) сумма квадратов катетов равняется квадрату гипотенузы.

Сумма углов равнобедренного треугольника

Ранее мы говорили, что равнобедренным называют многоугольник с тремя вершинами, содержащий две равные стороны. Известно такое свойство данной геометрической фигуры: углы при его основании равны. Докажем это.

Возьмем треугольник КМН, который является равнобедренным, КН - его основание.

От нас требуется доказать, что ∟К = ∟Н. Итак, допустим, что МА - это биссектриса нашего треугольника КМН. Треугольник МКА с учетом первого признака равенства равен треугольнику МНА. А именно по условию дано, что КМ = НМ, МА является общей стороной, ∟1 = ∟2, поскольку МА - это биссектриса. Используя факт равенства этих двух треугольников, можно утверждать, что ∟К = ∟Н. Значит, теорема доказана.

Но нас интересует, какова сумма углов треугольника (равнобедренного). Поскольку в этом отношении у него нет своих особенностей, будем отталкиваться от теоремы, рассмотренной ранее. То есть мы можем утверждать, что ∟К + ∟М + ∟Н = 180°, или 2 х ∟К + ∟М = 180° (поскольку ∟К = ∟Н). Данное свойство доказывать не будем, поскольку сама теорема о сумме углов треугольника была доказана ранее.

Кроме рассмотренных свойств об углах треугольника, имеют место и такие немаловажные утверждения:

  • в которая была опущена на основание, является одновременно медианой, биссектрисой угла, который находится между равными сторонами, а также его основания;
  • медианы (биссектрисы, высоты), которые проведены к боковым сторонам такой геометрической фигуры, равны.

Равносторонний треугольник

Его еще называют правильным, это тот треугольник, у которого равны все стороны. А поэтому равны также и углы. Каждый из них составляет 60 градусов. Докажем это свойство.

Допустим, что у нас есть треугольник КМН. Нам известно, что КМ = НМ = КН. А это значит, что согласно свойству углов, расположенных при основании в равнобедренном треугольнике, ∟К = ∟М = ∟Н. Поскольку согласно теореме сумма углов треугольника ∟К + ∟М + ∟Н = 180°, то 3 х ∟К = 180° или ∟К = 60°, ∟М = 60°, ∟Н = 60°. Таким образом, утверждение доказано.

Как видно из выше приведенного доказательства на основании теоремы, сумма углов как и сумма углов любого другого треугольника, составляет 180 градусов. Снова доказывать эту теорему нет необходимости.

Существуют еще такие свойства, характерные для равностороннего треугольника:

  • медиана, биссектриса, высота в такой геометрической фигуре совпадают, а их длина вычисляется как (а х √3) : 2;
  • если описать вокруг данного многоугольника окружность, то ее радиус будет равен (а х √3) : 3;
  • если вписать в равносторонний треугольник окружность, то ее радиус будет составлять (а х √3) : 6;
  • площадь этой геометрической фигуры вычисляется по формуле: (а2 х √3) : 4.

Тупоугольный треугольник

Согласно определению один из его углов находится в промежутке от 90 до 180 градусов. Но учитывая то, что два остальных угла данной геометрической фигуры острые, можно сделать вывод, что они не превышают 90 градусов. Следовательно, теорема о сумме углов треугольника работает при расчете суммы углов в тупоугольном треугольнике. Получается, мы смело можем утверждать, опираясь на вышеупомянутую теорему, что сумма углов тупоугольного треугольника равна 180 градусам. Опять-таки, данная теорема не нуждается в повторном доказательстве.

. (Слайд 1)

Тип урока: урок изучения нового материала.

Цели урока:

  • Образовательные :
    • рассмотреть теорему о сумме углов треугольника,
    • показать применение теоремы при решении задач.
  • Воспитательные :
  • Развивающие :
    • развитие аналитического мышления,
    • развитие «умений учиться»: использовать знания, умения и навыки в учебном процессе,
    • развитие логического мышления, способности четко формулировать свои мысли.

Оборудование: интерактивная доска, презентация, карточки.

ХОД УРОКА

I. Организационный момент

– Сегодня на уроке мы вспомним определения прямоугольного, равнобедренного, равностороннего треугольников. Повторим свойства углов треугольников. Применяя свойства внутренних односторонних и внутренних накрест лежащих углов докажем теорему о сумме углов треугольника и научимся применять ее при решении задач.

II. Устно (Слайд 2)

1) Найти на рисунках прямоугольный, равнобедренный, равносторонний треугольники.
2) Дать определение этим треугольникам.
3) Сформулировать свойства углов равностороннего и равнобедренного треугольника.

4) На рисунке KE II NH. (слайд 3)

– Укажите секущие для этих прямых
– Найти внутренние односторонние углы, внутренние накрест лежащие углы, назвать их свойства

III. Объяснение нового материала

Теорема. Сумма углов треугольника равна 180 о

По формулировке теоремы, ребята строят чертеж, записывают условие, заключение. Отвечая на вопросы, самостоятельно доказывают теорему.

Дано:

Доказать:

Доказательство:

1. Через вершину В треугольника проведем прямую BD II AC.
2. Указать секущие для параллельных прямых.
3. Что можно сказать об углах CBD и ACB? (сделать запись)
4. Что мы знаем об углах CAB и ABD? (сделать запись)
5. Заменим угол CBD углом ACB
6. Сделать вывод.

IV. Закончи предложение. (Слайд 4)

1. Сумма углов треугольника равна …
2. В треугольнике один из углов равен, другой, третий угол треугольника равен …
3. Сумма острых углов прямоугольного треугольника равна …
4. Углы равнобедренного прямоугольного треугольника равны …
5. Углы равностороннего треугольника равны...
6. Если угол между боковыми сторонами равнобедренного треугольника равен 1000, то углы при основании равны …

V. Немного истории. (Слайды 5-7)

Доказательство теоремы о сумме углов треугольника «Сумма внутренних
углов треугольника равна двум прямым» приписывают Пифагору (580-500 г.г. до н.э.)

Древнегреческий ученый Прокл (410-485 г.г. н.э.),

Цели и задачи:

Образовательные:

  • повторить и обобщить знания о треугольнике;
  • доказать теорему о сумме углов треугольника;
  • практически убедиться в правильности формулировки теоремы;
  • научиться применять полученные знания при решении задач.

Развивающие:

  • развивать геометрическое мышление, интерес к предмету, познавательную и творческую деятельность учащихся, математическую речь, умение самостоятельно добывать знания.

Воспитательные:

  • развивать личностные качества учащихся, таких как целеустремленность, настойчивость, аккуратность, умение работать в коллективе.

Оборудование: мультимедийный проектор, треугольники из цветной бумаги, УМК «Живая математика», компьютер, экран.

Подготовительный этап: учитель дает задание ученику подготовить историческую справку о теореме «Сумма углов треугольника».

Тип урока : изучение нового материала.

Ход урока

I. Организационный момент

Приветствие. Психологический настрой учащихся на работу.

II. Разминка

С геометрической фигурой “треугольник” мы познакомились на предыдущих уроках. Давайте повторим, что нам известно о треугольнике?

Учащиеся работают по группам. Им предоставлена возможность общаться друг с другом, каждому самостоятельно строить процесс познания.

Что получилось? Каждая группа высказывает свои предложения, учитель записывает их на доске. Проводится обсуждение результатов:

Рисунок 1

III. Формулируем задачу урока

Итак, о треугольнике мы знаем уже достаточно много. Но не все. У каждого из вас на парте есть треугольники и транспортиры. Как вы думаете, какую задачу мы можем сформулировать?

Ученики формулируют задачу урока - найти сумму углов треугольника.

IV. Объяснение нового материала

Практическая часть (способствует актуализации знаний и навыков самопознания).Проведите измерения углов с помощью транспортира и найдите их сумму. Результаты запишите в тетрадь (заслушать полученные ответы). Выясняем, что сумма углов у всех получилась разная (так может получиться, потому что неточно приложили транспортир, небрежно выполнили подсчет и т.д.).

Выполните перегибания по пунктирным линиям и узнайте, чему еще равна сумма углов треугольника:

а)
Рисунок 2

б)
Рисунок 3

в)
Рисунок 4

г)
Рисунок 5

д)
Рисунок 6

После выполнения практической работы ученики формулируют ответ: Сумма углов треугольника равна градусной мере развернутого угла, т. е. 180°.

Учитель: В математике практическая работа дает возможность лишь сделать какое-то утверждение, но его нужно доказать. Утверждение, справедливость которого устанавливается путем доказательства, называется теоремой. Какую теорему мы можем сформулировать и доказать?

Ученики: Сумма углов треугольника равна 180 градусов.

Историческая справка: Свойство суммы углов треугольника было установлено еще в Древнем Египте. Доказательство, изложенное в современных учебниках, содержится в комментариях Прокла к «Началам» Евклида. Прокл утверждает, что это доказательство (рис. 8) было открыто еще пифагорейцами (5 в. до н. э.). В первой книге «Начал» Евклид излагает другое доказательство теоремы о сумме углов треугольника, которое легко понять при помощи чертежа (рис. 7):


Рисунок 7


Рисунок 8

Чертежи высвечиваются на экране через проектор.

Учитель предлагает с помощью чертежей доказать теорему.

Затем доказательство проводится с применением УМК «Живая математика» . Учитель на компьютере проецирует доказательство теоремы.

Теорема о сумме углов треугольника: «Сумма углов треугольника равна 180°»


Рисунок 9

Доказательство:

а)

Рисунок 10

б)

Рисунок 11

в)

Рисунок 12

Учащиеся в тетради делает краткую запись доказательства теоремы:

Теорема: Сумма углов треугольника равна 180°.


Рисунок 13

Дано: Δ АВС

Доказать: А + В + С = 180°.

Доказательство:

Что требовалось доказать.

V. Физ. минутка.

VI. Объяснение нового материала (продолжение)

Следствие из теоремы о сумме углов треугольника выводится учащимися самостоятельно, это способствует развитию умения формулировать собственную точку зрения, высказывать и аргументировать ее:

В любом треугольнике либо все углы острые, либо два острых угла, а третий тупой или прямой .

Если в треугольнике все углы острые, то он называется остроугольным .

Если один из углов треугольника тупой, то он называется тупоугольным .

Если один из углов треугольника прямой, то он называется прямоугольным .

Теорема о сумме углов треугольника позволяет классифицировать треугольники не только по сторонам, но и по углам. (По ходу введения видов треугольников учащимися заполняется таблица)

Таблица 1

Вид треугольника Равнобедренный Равносторонний Разносторонний
Прямоугольный
Тупоугольный
Остроугольный

VII. Закрепление изученного материала.

  1. Решить задачи устно:

(Чертежи высвечиваются на экране через проектор)

Задача 1. Найдите угол С.


Рисунок 14

Задача 2. Найдите угол F.


Рисунок 15

Задача 3. Найдите углы К и N.

Рисунок 16

Задача 4. Найдите углы P и T.


Рисунок 17

  1. Решить задачу самостоятельно № 223 (б, г).
  2. Решить задачу на доске и в тетрадях уч-ся №224.
  3. Вопросы: Может ли треугольник иметь: а) два прямых угла; б) два тупых угла; в) один прямой и один тупой угол.
  4. (выполняется устно) На карточках, имеющихся на каждом столе, изображены различные треугольники. Определите на глаз вид каждого треугольника.


Рисунок 18

  1. Найдите сумму углов 1, 2 и 3.


Рисунок 19

VIII. Итог урока.

Учитель: Что мы узнали? Для любого ли треугольника применима теорема?

IX. Рефлексия.

Передайте мне свое настроение, ребята! С обратной стороны треугольника изобразите свою мимику.


Рисунок 20

Домашнее задание: п.30 (1 часть), вопрос 1 гл. IV стр. 89 учебника; № 223 (а, в), № 225.

“Скажи мне – и я забуду,
Покажи мне – и я запомню,
Вовлеки меня – и я научусь”
Восточная пословица

Цель: Доказать теорему о сумме углов треугольника, упражнять в решении задач, используя данную теорему, развивать познавательную деятельность учащихся, используя дополнительный материал из разных источников, воспитывать умение слушать других.

Оборудование: Транспортир, линейка, модели треугольников, полоска настроения.

ХОД УРОКА

1. Организационный момент.

Отметьте на ленте настроения свое состояние на начало урока.

2. Повторение.

Повторить понятия, которые будут использованы при доказательстве теоремы: свойства углов при параллельных прямых, определение развернутого угла, градусная мера развернутого угла.

3. Новый материал.

3.1. Практическая работа.

У каждого ученика находятся три модели треугольника: остроугольный, прямоугольный и тупоугольный. Предлагается измерить углы треугольника и найти их сумму. Проанализировать результат. Могут получиться значения 177, 178, 179, 180, 181, 182, 183 градуса. Посчитайте среднее арифметическое (=180°) Предлагается вспомнить, когда углы имеют градусную меру 180 градусов. Ученики вспоминают, что это развернутый угол и сумма односторонних углов.

Давайте попробуем получить сумму углов треугольника используя оригами.

Историческая справка

Оригами (яп., букв.: “сложенная бумага”) - древнее искусство складывания фигурок из бумаги. Искусство оригами своими корнями уходит в древний Китай, где и была открыта бумага.

3.2. Доказательство теоремы из учебника Атанасяна Л.С.

Теорема о сумме углов треугольника.

Докажем одну из важнейших теорем геометрии – теорему о сумме углов треугольника.

Теорема. Сумма углов треугольника равна 180°.

Доказательство. Рассмотрим произвольный треугольник ABC и докажем, что A + B + C= 180°.

Проведем через вершину В прямую а, параллельную стороне АС. Углы 1 и 4 являются накрест лежащими углами при пересечении параллельных прямых а и АС секущей АВ, а углы 3 и 5 - накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому угол 4 равен углу 1, угол 5 равен углу 3.

Очевидно, сумма углов 4, 2 и 5 равна развернутому углу с вершиной В, т. е. угол 4+угол 2+угол 5=180°. Отсюда, учитывая предыдущие равенства, получаем: угол 1 + угол 2+ угол 3= 180°, или A + B+ C=180°. Теорема доказана.

3.3. Доказательство теоремы из учебника Погорелова А. В.

Доказать: A + B + C = 180 °

Доказательство:

1. Проведем через вершину B прямую BD // AC

2. DBC=ACB, как накрест лежащие при AC//BD и секущей BC.

3. ABD =ACB +CBD

Отсюда, A + B+C = ABD+BAC

4. ABD и BAC – односторонние при BD // AC и секущей AB, значит их сумма равна 180 ° , т.е. А+B + C=180 ° , что и требовалось доказать.

3. 4. Доказательство теоремы из учебника Киселева А.Н., Рыбкина Н.А.

Дано: АВС

Доказать: А+B +C=180 °

Доказательство:

1. Продолжим сторону АС. Проведем СЕ//АВ

2. А=ЕСД, как соответственные при АВ//СЕ и АД - секущей

3. В=ВСЕ, как накрест лежащие при АВ//СЕ и ВС - секущей.

4. ЕСД+ВСЕ+С=180 ° , значит А + В + С = 180 ° , что и требовалось доказать.

3.5. Следствия 1. В любом треугольнике все углы острые, либо два угла острых, а третий тупой или прямой.

Следствие 2.

Внешний угол треугольника равен сумме двух других углов треугольника, не смежных с ним.

3.6. Теорема позволяет классифицировать треугольники не только по сторонам, но и по углам.

Вид треугольника Равнобедренный Равносторонний Разносторонний
прямоугольный
тупоугольный
остроугольный

4. Закрепление.

4.1. Решение задач по готовым чертежам.

Найти неизвестные углы треугольника.

4.2. Проверка знаний.

1. В завершении нашего урока, ответьте на вопросы:

Существуют ли треугольники с углами:

а) 30, 60, 90 градусов,

b) 46, 4, 140 градусов,

с) 56, 46, 72 градуса?

2. Может ли в треугольнике быть:

а) два тупых угла,

b) тупой и прямой углы,

с) два прямых угла?

3. Определить вид треугольника, если один угол – 45 градусов, другой – 90 градусов.

4. В каком треугольнике сумма углов больше: в остроугольном, тупоугольном или прямоугольном?

5. Можно ли измерить углы любого треугольника?

Это вопрос-шутка, т.к. существует Бермудский треугольник, находящийся в Атлантическом океане между Бермудскими островами, государством Пуэрто-Рико и полуостровом Флорида, у которого невозможно измерить углы. (Приложение 1)

5. Итог урока.

Отметьте на ленте настроения свое состояние на конец урока.

Домашнее задание.

П. 30–31; № 223 а, б; № 227 а; рабочая тетрадь № 116, 118.